Abstract:
A liquid crystal display includes a pixel electrode including a first subpixel electrode and a second subpixel electrode spaced apart with a gap therebetween, a common electrode facing the pixel electrode, and a liquid crystal layer formed between the pixel electrode and the common electrode and including a plurality of liquid crystal molecules. The first and second subpixel electrodes include a plurality of branches, and each of the first and second subpixel electrodes includes a plurality of subregions. The branches extend in different directions in different subregions.
Abstract:
A liquid crystal display according to an embodiment of the present invention includes: first and second substrates opposed to each other; a liquid crystal layer including liquid crystal molecules interposed between the first and second substrates; a gate line formed on the first substrate and transmitting a gate signal; first and second data lines formed on the first substrate and transmitting first and second data voltages having different polarities; a first switching element connected to the gate line and the first data line; a second switching element connected to the gate line and the second data line; and first and second pixel electrodes that are connected to the first and second switching elements, respectively, and separated from each other, wherein the liquid crystal layer has positive dielectric anisotropy.
Abstract:
The present invention relates to a liquid crystal display including a pixel electrode including a first subpixel electrode and a second subpixel electrode spaced apart with a gap therebetween, a common electrode facing the pixel electrode, and a liquid crystal layer formed between the pixel electrode and the common electrode and including a plurality of liquid crystal molecules. The first and second subpixel electrodes include a plurality of branches, and each of the first and second subpixel electrodes includes a plurality of subregions. The branches extend in different directions in different subregions.
Abstract:
In a touch substrate and a display apparatus, the touch substrate includes a first electrode, a second electrode, a first touch electrode and a blocking layer. The first electrode includes an opaque conductive material and extends along a first direction. The second electrode includes the opaque conductive material, extends along a second direction crossing the first direction, and has a gap through which the first electrode extends. The first touch electrode is formed on the first electrode and is electrically connected to the first electrode. The blocking layer overlaps the first and second electrodes.
Abstract:
A display apparatus includes a base substrate including a display region and a peripheral region that is a non-display region surrounding the display region, a plurality of data lines disposed in the display region on the base substrate and extending to the peripheral region, a bypass data line disposed in the display region and the peripheral region on the base substrate and electrically connected to at least one of the data lines, and a dummy pattern spaced apart from the bypass data line and disposed on a same layer as the bypass data line.
Abstract:
A pixel includes first to fourth transistors and a driving transistor. The first transistor is connected between a data line and a first node and has a gate electrode to receive a scan signal. The driving transistor is connected between the first node and a second node and has a gate electrode connected to a third node. The second transistor is connected between the second and third nodes and has a gate electrode to receive the scan signal. The third transistor is connected between first power and the first node and has a gate electrode to receive an emission signal. The fourth transistor is connected between the first and second nodes and has a gate electrode to receive an initialization signal. An organic light emitting diode is connected between the second node and second power. A storage capacitor is connected between the first power and third node.
Abstract:
A display panel driver drives pixels based on first power having at least three voltage levels, second power having a constant voltage, and third power having two voltage levels. Each pixel includes a first transistor connected between first and second nodes and including a gate electrode to receive a scan signal, a second transistor connected between the second node and a third node in series with the first transistor and including a gate electrode to receive the third power, and a driving transistor connected between a source of the first power and the third node and including a gate electrode connected to the first electrode to control a driving current for an organic light emitting diode. A first capacitor is connected between a source of the third power and the first node, and a second capacitor is connected between the second node and one of the data lines.
Abstract:
A mother substrate includes a display substrate cell defined by a scribe line, the display substrate cell including a plurality of gate lines, a gate circuit part driving the gate lines, and a gate pad part connected to the gate circuit part, a gate test pad part in a peripheral area surrounding the display substrate cell, the gate test pad part being configured to receive a gate test signal, a gate test line part connecting the gate test pad part and the gate pad part, and a switching part connected to the gate test line part and configured to control turning on and turning off of the gate test line part.
Abstract:
The present invention relates to a display apparatus with pixels, wherein each pixel includes a switching device, a micro-electro-mechanical system (MEMS), and a gray scale control device. The switching device can be connected to a gate line and a data line to output a corresponding data signal in response to a gate signal. The MEMS may be connected to an output electrode of the switching device to transmit or block light in response to the corresponding data signal. The gray scale control device may be coupled to the output electrode of the switching device to control a time interval during which the corresponding data signal is applied to the MEMS. Accordingly, each pixel may display a desired gray scale.
Abstract:
A display panel includes; a lower gate line, a lower data line disposed substantially perpendicular to the lower gate line, a thin film transistor (“TFT”) connected to the lower gate line and the lower data line, an insulating layer disposed on the lower gate line, the lower data line, and the TFT and having a plurality of trenches exposing the lower gate line and the lower data line, an upper gate line disposed in the trench on the lower gate line, an upper data line disposed in the trench on the lower data line, and a pixel electrode connected to the TFT.