Abstract:
A thin film transistor array panel is provided. The thin film transistor array panel includes a substrate, a seed layer positioned on the substrate, and a semiconductor layer positioned on the seed layer, wherein a lattice mismatch between the seed layer and the semiconductor layer is equal to or less than 1.4%.
Abstract:
A display panel includes; a lower gate line, a lower data line disposed substantially perpendicular to the lower gate line, a thin film transistor (“TFT”) connected to the lower gate line and the lower data line, an insulating layer disposed on the lower gate line, the lower data line, and the TFT and having a plurality of trenches exposing the lower gate line and the lower data line, an upper gate line disposed in the trench on the lower gate line, an upper data line disposed in the trench on the lower data line, and a pixel electrode connected to the TFT.
Abstract:
A thin film transistor substrate includes a base substrate and a thin film transistor. The base substrate includes a gate line and a data line. The thin film transistor is connected to the gate line and the data line. The thin film transistor includes a gate electrode, a semiconductor pattern and source, drain electrodes. The gate electrode is disposed on the base substrate. The semiconductor pattern overlaps with the gate electrode. The source, drain electrodes is spaced apart from each other. The source electrode includes a first source layer, a second source layer disposed on the first source layer and a first diffusion barrier disposed between the first source layer and second source layer. The drain electrode includes a first drain layer, a second drain layer disposed on the first drain layer and a second diffusion barrier disposed between the first drain layer and second drain layer.
Abstract:
A liquid crystal display (LCD) includes thin film transistors (TFTs) each having spaced apart source/drain electrodes and an oxide-type semiconductive film disposed over and between the source/drain electrodes to define an active layer. Each of the source/drain electrodes includes a portion of a subdivided transparent conductive layer where one subdivision of the transparent conductive layer continues from within its one of the source/drain electrodes to define an optically exposed pixel-electrode that is reliably connected integrally to the one source/drain electrode. Mass production costs can be reduced and production reliability increased because a fewer number of photolithographic masks can be used to form the TFTs.
Abstract:
A sputtering device includes: a sputtering target; a substrate supporter facing the sputtering target and upon which a substrate is disposed; an anode mask between the sputtering target and the substrate which is on the substrate supporter; and a gas distribution member between the anode mask and the sputtering target, and including a plurality of gas distribution tubes separated from each other. Each gas distribution tube includes a plurality of discharge holes defined therein and through which gas is discharged to a vacuum chamber configured to receive the sputtering device.
Abstract:
A thin film transistor array panel is provided and includes a gate line, a gate insulating layer covering the gate line, a semiconductor layer disposed on the gate insulating layer, and a data line and a drain electrode disposed on the semiconductor layer. The data line and the drain electrode have a dual-layered structure including a lower layer and an upper layer with the lower layer having a first portion protruded outside the upper layer and the semiconductor layer having a second portion protruded outside the edge of the lower layer.
Abstract:
In a thin-film transistor (“TFT”) substrate and a method of manufacturing a TFT substrate, the TFT substrate includes a base substrate, a gate pattern, a source pattern and a pixel electrode. One of the gate pattern and the source pattern includes a pure copper layer, and a conductive layer under the pure copper layer. The conductive layer includes a copper alloy oxide, a copper alloy nitride or a copper alloy oxynitride.