Abstract:
A display apparatus includes a thin film transistor facing a substrate with a buffer layer therebetween and including a semiconductor layer, a channel region, a source region, a drain region, and a gate electrode; a conductive pattern between the substrate and the semiconductor layer and connected to the semiconductor layer, the conductive pattern facing the semiconductor layer with the buffer layer therebetween; a contact hole in the buffer layer and exposing the conductive pattern to outside the buffer layer; and a display element which is electrically connected to the thin film transistor. The source region or the drain region extends through the contact hole in the buffer layer, to contact the conductive pattern and connect the semiconductor layer to the conductive pattern.
Abstract:
Provided is a semiconductor device including a buffer layer that is on a substrate and includes an inclined surface; a crystalline silicon layer that is on the buffer layer; a gate electrode that is on the crystalline silicon layer while being insulated from the crystalline silicon layer; and a source electrode and a drain electrode that are each electrically connected to the crystalline silicon layer, the angle between the substrate and the inclined surface being in a range of about 17.5 degrees to less than about 70 degrees.
Abstract:
A thin film transistor includes a gate electrode, an insulating layer disposed on the gate electrode, and an active layer disposed on the insulating layer, where the active layer includes a perovskite compound represented by the following Formula: AB(1-u)C(u)[X(1-v)Y(v)]3, where A is a monovalent organic cation, a monovalent inorganic cation, or any combination thereof, B is Sn2+, C is a divalent cation or trivalent cation, X is a monovalent anion, Y is a monovalent anion different from X, u is a real number greater than 0 and less than 1, and v is a real number greater than 0 and less than 1.
Abstract:
A display apparatus is disclosed that includes contact holes formed to expose at least a portion of a conductive layer or a semiconductor layer without damage to the surface of the conductive layer or the semiconductor layer, and a method of manufacturing the display apparatus. The display apparatus includes a substrate, a conductive mound arranged on the substrate, a first insulating mound arranged on the substrate, and a semiconductor layer including a first region arranged on the conductive mound, and a second region arranged on the first insulating mound. The second region of the semiconductor layer substantially covers an upper surface of the first insulating mound.
Abstract:
A display apparatus includes a thin film transistor facing a substrate with a buffer layer therebetween and including a semiconductor layer, a channel region, a source region, a drain region, and a gate electrode; a conductive pattern between the substrate and the semiconductor layer and connected to the semiconductor layer, the conductive pattern facing the semiconductor layer with the buffer layer therebetween; a contact hole in the buffer layer and exposing the conductive pattern to outside the buffer layer; and a display element which is electrically connected to the thin film transistor. The source region or the drain region extends through the contact hole in the buffer layer, to contact the conductive pattern and connect the semiconductor layer to the conductive pattern.
Abstract:
A display apparatus includes a substrate including a display area and a peripheral area outside the display area, a pixel circuit disposed on the substrate in the display area, where the pixel circuit includes a driving thin film transistor and a switching thin film transistor, and a display element connected to the pixel circuit. The driving thin film transistor includes a driving semiconductor layer having a single layer structure, the switching thin film transistor includes a switching semiconductor layer in which a first layer, a second layer, and a third layer, which are oxide semiconductors, are sequentially stacked one on another, and a conductivity of the second layer of the switching semiconductor layer is greater than respective conductivities of the first layer and the third layer of the switching semiconductor layer.
Abstract:
A display device includes: a substrate; a first thin film transistor and a second thin film transistor arranged over the substrate; a display element connected to the first thin film transistor; a wiring connected to the second thin film transistor and including a first wiring layer and a second wiring layer; a pattern insulating layer arranged between the first wiring layer and the second wiring layer; a planarization layer covering the wiring; and a connection electrode arranged on the planarization layer and connected to the first wiring layer and the second wiring layer respectively through a first contact hole and a second contact hole.
Abstract:
A method of manufacturing a thin film transistor and a method of manufacturing a display substrate having the same are disclosed. In one aspect, the method of manufacturing a thin film transistor comprises forming an oxide semiconductor layer over a substrate, plasma-treating the oxide semiconductor layer with a plasma generated from a nitrogen gas or a nitric oxide gas so as to decrease defects in the oxide semiconductor layer, and annealing the plasma-treated oxide semiconductor layer to form a channel layer.