Abstract:
An organic light-emitting display apparatus includes: a substrate including a display area and a peripheral area outside the display area; an alignment mark located in the peripheral area; and an insulating film located in the peripheral area and including a first opening through which at least a part of the alignment mark is exposed and a plurality of slits that extend from the first opening.
Abstract:
An apparatus for separating a substrate and a method of separating a substrate by using the same are disclosed. In one aspect, the apparatus includes a stage and an adsorber facing the stage and comprising a plurality of vacuum pad portions. An upper surface of the stage includes a first region and a pair of second regions located on opposing sides of the first region, wherein the first region and the second regions are disposed on different planes, and wherein each of the second regions is inclined with respect to the first region.
Abstract:
A display panel includes a plurality of display elements arranged in a display area, an opening, a multi-layer including a first layer and a second layer disposed on the first layer, and a groove. Each display element includes a pixel electrode, an emission layer disposed on the pixel electrode, and an opposite electrode disposed on the emission layer. The display area surrounds the opening. The groove is located between the opening and the display area. The groove has an undercut cross-section that is concave in a thickness direction of the multi-layer, the second layer includes a pair of tips that protrude toward a center of the groove, and a length of each tip is less than about 2 μm.
Abstract:
Provided is a display device including a substrate, a semiconductor layer on the substrate, an interlayer insulating layer on the semiconductor layer, a source electrode or a drain electrode on the interlayer insulating layer, and connected to the semiconductor layer, an organic light-emitting diode connected to the source electrode or the drain electrode, and a thin film encapsulation layer on the organic light-emitting diode, wherein, a neutral plane corresponding to an impact applied to the thin film encapsulation layer is inside or below the interlayer insulating layer.
Abstract:
Provided are a stage for cutting a substrate and a substrate-cutting apparatus. The stage for cutting a substrate includes: a plurality of cell areas, each of the cell areas including a first opening; an edge area at an outer side of the cell areas, the edge area including a second opening having a diameter that is larger than a diameter of the first opening; a dummy area between adjacent ones of the cell areas; and a cutting groove between one of the adjacent ones of the cell areas and the dummy area or between one of the cell areas and the edge area.
Abstract:
An organic light-emitting display apparatus includes: a substrate including a display area and a peripheral area outside the display area; an alignment mark located in the peripheral area; and an insulating film located in the peripheral area and including a first opening through which at least a part of the alignment mark is exposed and a plurality of slits that extend from the first opening.
Abstract:
An apparatus for separating a substrate and a method of separating a substrate by using the same are disclosed. In one aspect, the apparatus includes a stage and an adsorber facing the stage and comprising a plurality of vacuum pad portions. An upper surface of the stage includes a first region and a pair of second regions located on opposing sides of the first region, wherein the first region and the second regions are disposed on different planes, and wherein each of the second regions is inclined with respect to the first region.
Abstract:
A pixel includes a light emitting element including an anode and a cathode, a first transistor connected between the anode and a first power line and switched by a voltage of a node, a second transistor connected between the first transistor connected to the first power line and a data line and switched by a write scan signal, a third transistor connected between the node and the anode and switched by a compensation scan signal, and an insulating layer covering the second and third transistors. A first groove is defined in a portion of the insulating layer adjacent to the third transistor.
Abstract:
A display device includes: a substrate that includes an opening and a display area that surrounds the opening; a plurality of grooves formed in the substrate between the opening and the display area; a display element layer on the substrate and that includes a plurality of display elements in the display area; a thin-film encapsulation layer disposed on the display element layer, the thin-film encapsulation layer including a first inorganic encapsulation layer, an organic encapsulation layer, and a second inorganic encapsulation layer which are sequentially stacked; a planarization layer disposed over the plurality of grooves and that includes an organic insulating material, wherein the planarization layer is disposed over the second inorganic encapsulation layer, and the organic encapsulation layer is disposed below the second inorganic encapsulation layer.
Abstract:
A display panel including: a substrate including an opening area and a display area surrounding the opening area; a plurality of display elements, each including a pixel electrode, an emission layer, and an opposite electrode, the plurality of display elements being located in the display area; a thin-film encapsulation layer covering the plurality of display elements and including an organic encapsulation layer and an inorganic encapsulation layer; a plurality of grooves located between the opening area and the display area, the plurality of grooves being concave in a depth direction of the substrate and having an undercut structure; and a partition wall located between neighboring grooves among the plurality of grooves.