Abstract:
A liquid crystal display includes a first substrate, a pixel electrode formed on the first substrate, a second substrate facing the first substrate, and a common electrode formed on the second substrate. The pixel electrode includes a first subpixel electrode disposed in a first subpixel region, and a second subpixel electrode disposed in a second subpixel region. A first voltage applied to the first subpixel electrode and a second voltage applied to the second subpixel electrode are different from each other, and a ratio of the first voltage to the second voltage is about 0.76 to about 0.80.
Abstract:
A display device according to an exemplary embodiment includes a substrate; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; a first common electrode overlapping the pixel electrode via an insulating layer; a second common electrode spaced apart from the first common electrode with a plurality of microcavities therebetween; a roof layer disposed on the second common electrode; a liquid crystal layer including liquid crystal molecules disposed in the microcavities; and an encapsulation layer disposed on the roof layer and sealing the microcavities.
Abstract:
A liquid crystal display includes a first substrate, pixel electrodes disposed on the first substrate and including a first sub-pixel electrode and a second sub-pixel electrode separated from each other and positioned in one pixel area, gate lines connected to the pixel electrodes, data lines connected to the pixel electrodes, reference voltage lines connected to the second sub-pixel electrode of the pixel electrodes, a second substrate facing the first substrate, a common electrode disposed on the second substrate, and a liquid crystal layer positioned between the first substrate and the second substrate and including liquid crystal molecules, a first initial pretilt angle of the liquid crystal molecules corresponding to the first sub-pixel electrode for the second substrate surface is larger than a second initial pretilt angle of the liquid crystal molecules corresponding to the second sub-pixel electrode for the second substrate surface.
Abstract:
A liquid crystal display device includes: a first substrate for which a single pixel includes: first, second and third thin film transistors on the first substrate; a pixel electrode including a first subpixel electrode and a second subpixel electrode which are connected to the first thin film transistor and the second thin film transistor, respectively; and a divided reference voltage line connected to the third thin film transistor; a second substrate facing the first substrate; a common electrode on the second substrate; and a liquid crystal layer between the pixel electrode and the common electrode and including liquid crystal molecules. The third thin film transistor includes an electrically floating gate electrode, a source electrode defined by an extended portion of a terminal of the second thin film transistor, and a drain electrode defined by an extended portion of the divided reference voltage line.
Abstract:
A liquid crystal display of the present system and method includes: a lower substrate including a plurality of pixel areas; an upper substrate formed with a common electrode; a liquid crystal layer interposed between the lower substrate and the upper substrate; and first and second pixel electrodes respectively positioned in a plurality of pixel areas, wherein the second pixel electrode is positioned in a region including a center axis of each pixel area, and the first pixel electrode is positioned in a left side and a right side of the second pixel electrode.
Abstract:
An exemplary embodiment of the present invention provides a liquid crystal display including a first substrate, a gate line formed on the first substrate, an insulating layer formed on the gate line, and a pixel electrode which is formed on the insulating layer and includes a first subpixel electrode and a second subpixel electrode in which the pixel electrode is divided into three sub regions, the first subpixel electrode is formed in a first sub region and the second subpixel electrode is formed in a third sub region, and both the first subpixel electrode and the second subpixel electrode are formed in a second sub region.
Abstract:
A liquid crystal display includes a first gate line, a first data line, and a first pixel. The first pixel includes: a first subpixel including a first thin film transistor connected to the first gate line and data line, and a first liquid crystal capacitor, wherein a first terminal of the first liquid crystal capacitor is electrically connected to the first thin film transistor and a second terminal of the first liquid crystal capacitor is configured to receive a common voltage; and a second subpixel including a second thin film transistor connected to the first gate line and data line, a second liquid crystal capacitor, wherein a first terminal of the second liquid crystal capacitor is configured to receive the common voltage, and a thin film transistor resistor electrically connected between the second thin film transistor and a second terminal of the second liquid crystal capacitor.
Abstract:
According to an exemplary embodiment of the present invention, a liquid crystal display includes: a first substrate; a first subpixel electrode disposed on the first substrate, supplied with a first voltage and including a first sub region and a second sub region; a second subpixel electrode disposed on the first substrate and supplied with a second voltage; an insulating layer disposed on the first sub region of the first subpixel electrode and disposed beneath the second subpixel electrode and the second sub region of the first subpixel electrode; a second substrate facing the first substrate; and a common electrode disposed on the second substrate, in which a first region in which the first subpixel electrode is formed includes four distinct areas having different characteristics.
Abstract:
A liquid crystal display according to an exemplary embodiment of the present invention includes: a first substrate; a first subpixel electrode positioned on the first substrate and configured to receive a first voltage; a second subpixel electrode positioned on the first substrate and configured to receive a second voltage; an insulating layer positioned between the first subpixel electrode and the second subpixel electrode; a second substrate facing the first substrate; and a common electrode positioned on the second substrate. A portion of the first subpixel electrode and a portion of the second subpixel electrode overlap each other with the insulating layer interposed therebetween, and a difference between the first voltage and a common voltage is larger than a difference between the second voltage and the common voltage.