Abstract:
A genetically engineered bacteria cell having an enhanced activity of GlnD or GlnK, and a method of producing succinic acid by using the genetically engineered bacteria cell are provided.
Abstract:
Provided is a screening method of discovering genes capable of increasing 1,4-BDO production on the basis of proteomics data. Over-expression of proteins screened by the method, NCgl0630 (citrate synthase) and NCgl2145 (hyperthetical protein), increase 1,4-BDO productivity. The method may lead to screening of a protein associated with 1,4-BDO productivity, thereby increasing 1,4-BDO productivity, and thus, the method may be recognized as being industrially applicable.
Abstract:
A cathode active material including a layered lithium metal composite oxide including a first lithium metal oxide and a second lithium metal oxide having different crystal structures, and a third lithium metal oxide which is incapable of intercalating and deintercalating lithium in a charge and discharge voltage range of about 2.0 volts to about 4.7 volts versus lithium Li/Li+. Also, a cathode and a lithium battery including the cathode active material, and a method of preparing the cathode active material.
Abstract translation:包括具有不同结晶结构的第一锂金属氧化物和第二锂金属氧化物的层状锂金属复合氧化物的正极活性物质和不能在充放电电压范围内插入和脱嵌锂的第三锂金属氧化物 对于Li / Li +相对于约2.0伏至约4.7伏。 另外,包括正极活性物质的阴极和锂电池,以及制备正极活性物质的方法。
Abstract:
A cathode active material including a lithium transition metal oxide of Chemical Formula 1: Li2-xMexMyMn1-yO3-δ Chemical Formula 1 wherein 0≦x≦0.2, 0≦y≦0.2, 0
Abstract:
A genetically modified microorganism comprising a polynucleotide encoding α-ketoglutarate synthase or a mutant thereof, and a polynucleotide encoding pyruvate carboxylase or a mutant thereof; wherein the genetically modified microorganism has decreased malate quinone oxidoreductase activity and/or decreased phosphoenolpyruvate carboxykinase activity compared to an unmodified microorganism of the same type, and wherein the genetically modified microorganism produces 4-hydroxybutyrate.
Abstract:
A genetically engineered bacterial cell wherein activity of a pathway in the cell of converting α-ketoglutarate into succinate semialdehyde; or activity of succinyl semialdehyde dehydrogenase in the cell is increased compared to the activity in a non-genetically engineered cell of the same type, and a method of producing succinic acid by using the same.
Abstract:
A positive active material including: a core including an overlithiated lithium transition metal oxide, and a coating layer which is disposed on at least a portion of a surface of the core, the coating layer including a polymer having an oxidation potential of about 4.4 volts to about 4.7 volts versus lithium metal. Also a manufacturing method thereof, and a positive electrode and a lithium battery including the positive active material.
Abstract:
Provided is a recombinant microorganism having enhanced activity of at least one protein selected from 6-phosphogluconate dehydrogenase (6PGD) and foldase protein PrsA, a method of reducing a concentration of a fluorine-containing compound in a sample by using the recombinant microorganism, and a method of preparing the recombinant microorganism.
Abstract:
A positive active material includes an overlithiated lithium transition metal oxide including: a metal cation and a Li2MO3 phase, wherein M is at least one metal selected from a Period 4 transition metal having an average oxidation number of +4 and a Period 5 transition metal having an average oxidation number of +4, and wherein an amount of the Li2MO3 phase is less than or equal to about 20 mole percent, based on 1 mole of the overlithiated lithium transition metal oxide.
Abstract:
Provided is a microorganism including a gene encoding a protein having a dehalogenase activity, a composition for using in reducing a concentration of fluorinated methane in a sample, the composition including the microorganism including the gene encoding the protein having the dehalogenase activity, and a method of reducing the concentration of fluorinated methane in the sample.