Abstract:
An apparatus and a method for wireless power reception include converting a received wireless power to a wireless power for charging using a synchronous rectifier and a direct current/direct current (DC/DC) converter having a structure providing a high efficiency and low heat generation even when a high charging current is supplied.
Abstract:
An apparatus and a method for wireless power reception include converting a received wireless power to a wireless power for charging using a synchronous rectifier and a direct current/direct current (DC/DC) converter having a structure providing a high efficiency and low heat generation even when a high charging current is supplied.
Abstract:
An authentication of a power transmitting unit (PTU) includes determining whether an access right to an external device is present in a power receiving unit (PRU) based on identification information of the PRU, and network-connecting the PRU to the external device in response to a result of the determining being that the access right is present in the PRU.
Abstract:
A wireless power relay apparatus includes a relay resonator configured to relay power from a source resonator configured to wirelessly transmit the power, to a target resonator configured to wirelessly receive the power through a mutual resonance, the relay resonator having a higher quality factor than the source resonator and the target resonator.
Abstract:
A wireless power relay apparatus includes a relay resonator configured to relay power from a source resonator configured to wirelessly transmit the power, to a target resonator configured to wirelessly receive the power through a mutual resonance, the relay resonator having a higher quality factor than the source resonator and the target resonator.
Abstract:
A resonator has an increased isolation for stable wireless power transmission. A material that reduces resonance coupling may be disposed in a space between each of a plurality of resonators and a resonator adjacent to each of the plurality of resonators. A material that reduces resonance coupling may be disposed on a plane opposite to a direction in which a resonator resonates. Power at an operating frequency set to be equal to or within a predetermined range of a frequency corresponding to a resonant mode may be injected into a plurality of transmission resonators.
Abstract:
A resonator having increased isolation includes a first resonator having first characteristics, and configured to resonate with another resonator having the first characteristics; and a second resonator having second characteristics, and configured to resonate with another resonator having the second characteristics; wherein the resonator has an arrangement and a structure that minimizes a coupling between the first resonator and the second resonator.
Abstract:
A resonator has an increased isolation for stable wireless power transmission. A material that reduces resonance coupling may be disposed in a space between each of a plurality of resonators and a resonator adjacent to each of the plurality of resonators. A material that reduces resonance coupling may be disposed on a plane opposite to a direction in which a resonator resonates. Power at an operating frequency set to be equal to or within a predetermined range of a frequency corresponding to a resonant mode may be injected into a plurality of transmission resonators.
Abstract:
A wireless power transmission apparatus includes a source resonator configured to transmit an output power from which a harmonic component has been cancelled to a wireless power reception apparatus by resonating with a target resonator of the wireless power transmission apparatus, and a resonant power generator configured to differentially input a first input signal and a second input signal to the source resonator, and cancel the harmonic component of the output power.
Abstract:
A wireless power transmission apparatus includes a plurality of transmission (TX) resonators configured to resonate with at least one reception (RX) resonator, and wirelessly transmit power to the at least one RX resonator; and a frequency controller configured to control the input frequency so that power is stably supplied to the at least one RX resonator.