Abstract:
A substrate processing apparatus includes a chamber including an upper chamber and a lower chamber coupled to each other to provide a space for processing a substrate, a substrate support configured to support the substrate within the chamber, an upper supply port provided in the upper chamber and configured to supply a supercritical fluid on an upper surface of the substrate within the chamber, a recess provided in a lower surface of the upper chamber, the recess including a horizontal extension portion extending in a direction parallel with the upper surface of the substrate in a radial direction from an outlet of the upper supply port and an inclined extension portion extending obliquely at an angle from the horizontal extension portion, and a baffle member disposed within the recess between the upper supply port and the substrate.
Abstract:
Provided is a method of rinsing and drying a semiconductor device, including forming a pattern on a substrate; rinsing the substrate, where the pattern is formed, using a rinse solution; loading the substrate into a dry chamber; injecting supercritical carbon dioxide into the dry chamber such that rinse solution remaining on the pattern is diluted to have a concentration below 2 percent by weight based on a weight of the rinse solution remaining on the pattern and the supercritical carbon dioxide; and venting the supercritical carbon dioxide such that the dry chamber is maintained at atmospheric pressure to dry the substrate where the pattern is formed.
Abstract:
A substrate treating apparatus includes a fluid supply unit to supply a fluid to a chamber. The substrate is dried in the chamber using the fluid in a supercritical state. The fluid supply unit includes a storing tank to store the fluid and a conversion tank connected to the storing tank through a connection tube and to the chamber through a supply tube. The conversion tank includes a heater to heat the fluid.