Abstract:
There is provided a semiconductor light emitting device including a first conductivity-type semiconductor base layer and a plurality of light emitting nanostructures disposed to be spaced apart from one another on the first conductivity-type semiconductor base layer, each light emitting nanostructure including a first conductivity-type semiconductor core, an active layer, an electric charge blocking layer, and a second conductivity-type semiconductor layer, respectively, wherein the first conductivity-type semiconductor core has different first and second crystal planes in crystallographic directions.
Abstract:
There is provided a semiconductor light emitting device including a first conductivity-type semiconductor base layer and a plurality of light emitting nanostructures disposed to be spaced apart from one another on the first conductivity-type semiconductor base layer, each light emitting nanostructure including a first conductivity-type semiconductor core, an active layer, an electric charge blocking layer, and a second conductivity-type semiconductor layer, respectively, wherein the first conductivity-type semiconductor core has different first and second crystal planes in crystallographic directions.
Abstract:
There are provided a semiconductor light emitting device and a method of manufacturing the same. A method of manufacturing a plurality of light emitting nanostructures of a semiconductor light emitting device includes: forming a plurality of first conductivity type semiconductor cores on a first type semiconductor seed layer, each first conductivity type semiconductor core formed through an opening in an insulating film; forming an active layer on each first conductivity type semiconductor core; forming, using a mask pattern, a second conductivity type semiconductor layer on each active layer to cover the active layer, to form a plurality of light emitting nanostructures; and forming an electrode on the plurality of light emitting nanostructures.