Abstract:
The present disclosure relates to 5th generation (5G) or pre-5G communication systems for supporting higher data transfer rates, following the 4th generation (4G) communication systems, such as long term evolution (LTE). A method for supporting handover with multi-connectivity in a wireless communication system is provided. The method includes sending a measurement report message including information of at least one small base station (eNB) to a macro cell eNB, receiving information of a new small eNB in a target cell from the macro cell eNB based on the measurement report message, and performing a random access procedure with the new small eNB in the target cell based on handover.
Abstract:
In various embodiments, a metamaterial structure antenna may comprise: a feed line for feeding a signal; a ground plane comprising a cross-shaped aperture forming circular polarization on the basis of a magnetic field induced by the fed signal; and a patch plane formed parallel to the ground plane which emits electromagnetic waves on the basis of the circular polarization.
Abstract:
A wireless power transmitter according to various embodiments of the present invention can comprise a plurality of patch antennas, a coil, and a processor. The processor can control such that an electronic device is detected, the plurality of patch antennas and/or the coil is selected as a power transmission circuit for transmitting power for charging the electronic device, and power is transmitted by means of the plurality of patch antennas and/or the coil in accordance with the selection.
Abstract:
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. A method for communicating with user equipment (UE) by a base station is disclosed. The method comprises the steps of: identifying a type of one or more services required by the UE; notifying the UE of information on a configuration of a medium access control (MAC) layer and a physical (PHY) layer configured according to the identified type of one or more services; and communicating with the UE on the basis of the information on the configuration of the MAC layer and the PHY layer configured according to the identified type of one or more services.
Abstract:
The present disclosure relates to 5th generation (5G) or pre-5G communication systems for supporting higher data transfer rates, following the 4th generation (4G) communication systems, such as long term evolution (LTE). A method for supporting handover with multi-connectivity in a wireless communication system is provided. The method includes sending a measurement report message including information of at least one small base station (eNB) to a macro cell eNB, receiving information of a new small eNB in a target cell from the macro cell eNB based on the measurement report message, and performing a random access procedure with the new small eNB in the target cell based on handover.
Abstract:
The objective of the present invention is to provide services by effectively switching, by a terminal, a macro cell and a small cell on the basis of time in a communication system in which the macro cell and the small cell coexist. A method for operating a terminal in a wireless communication system comprises the steps of: transmitting, to a first base station and/or a second base station, information on a switching delay time required for the terminal to perform cell switching; and communicating through a resource of the first base station and a resource of the second base station which are allocated by considering the switching delay time.
Abstract:
The objective of the present invention is to provide services by effectively switching, by a terminal, a macro cell and a small cell on the basis of time in a communication system in which the macro cell and the small cell coexist. A method for operating a terminal in a wireless communication system comprises the steps of: transmitting, to a first base station and/or a second base station, information on a switching delay time required for the terminal to perform cell switching; and communicating through a resource of the first base station and a resource of the second base station which are allocated by considering the switching delay time.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system that is to support higher data transmission rates after 4G communication systems such as LTE. A method, by a MeNB, for switching a SeNB communicating with a UE in a wireless communication system, provided in an embodiment of the present disclosure, includes receiving, from the UE, a measurement report (MR) of the at least two SeNB neighboring with the UE, determining whether predetermined switch criteria are satisfied based on the MR, and transmitting, to the UE and a first SeNB or a second SeNB, a switch message indicating switching of an SeNB cooperating with the MeNB for communication with the UE from the first SeNB to the second SeNB, based on whether the switch criteria are satisfied.
Abstract:
A power providing device according to an embodiment of the present disclosure comprises a charger configured to adjust at least one of a voltage and a current of power provided from a power supplying source and to provide the adjusted power to an electronic device and a processor configured to receive, from the electronic device, at least one of identification information of the electronic device and information related to a battery of the electronic device, and to control the charger to adjust at least one of the voltage and the current of the power using at least one of the identification information about the electronic device and the information related to the battery of the electronic device.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method and apparatus for performing a relay communication are provided. A remote user equipment (UE) according to the present disclosure is configured to acquire a first parameter related to relay load from each of a plurality of relay candidate UEs, to select a relay UE which will perform a relay communication with the remote UE from among the plurality of relay candidate UEs based on the first parameter acquired from each of the plurality of relay candidate UEs, and to perform the relay communication with the selected relay UE. The first parameter is generated based on cellular communication load between a base station (BS) connected to a corresponding relay candidate UE and the corresponding relay candidate UE.