Abstract:
A memory device includes a memory module and a BIST logic circuit. The BIST logic circuit includes; a pattern generator configured to generate first main data including a first portion, an error correction code (ECC) encoder configured to generate first parity data based on the first main data, and a parity control circuit configured to generate mask data based on the first parity data and the first main data, and generate first substituted parity data based on the mask data and the first parity data, wherein a pattern of the first substituted parity data is the same as a pattern of the first portion of the first main data.
Abstract:
Disclosed is an electronic device which includes an audio processing block for voice recognition in a low-power mode. The electronic device includes a digital microphone that receives a voice signal from a user and converts the received voice signal into a PDM signal, and a DMIC interface circuit. The DMIC interface circuit includes a PDM-PCM converting block that converts the PDM signal into a PCM signal, a maxscale gain tuning block that tunes a maxscale gain of the PCM signal received from the PDM-PCM converting block based on a distance information indicating a physical distance between the user and the electronic device acquired in advance of the converting of the PDM signal, and an anti-aliasing block that performs filtering for acquiring voice data of a target frequency band associated with a PCM signal output from the maxscale gain tuning block.
Abstract:
A key enrollment method of a physically unclonable function (PUF) circuit including a plurality of PUF cells includes receiving a first level key from PUF cells, performing bit encoding on the first level key using a bit coding table based on Hamming weights of a plurality of bits in the first level key to generate a second level key, storing first helper data associated with the second level key in a non-volatile memory, performing block encoding on the second level key using an error correction code to generate a third level key, and storing second helper data associated with the third level key in the non-volatile memory.
Abstract:
A random number generator may include a first meta-stable inverter having an input terminal and an output terminal connected to each other and configured to generate a meta-stable voltage, an amplifier configured to amplify the meta-stable voltage, control circuitry configured to adjust a threshold voltage of the meta-stable voltage, and a sampler configured to generate a random number based on sampling the meta-stable voltage. The random number generator may be configured to be operated according to different modes of operation of a plurality of modes of operation. The amplifier may be a second meta-stable inverter configured to amplify the meta-stable voltage or include an input terminal and an output terminal that are connected to each other based on the random number generator being operated according to a first mode of operation or a second mode of operation, respectively, of the plurality of modes of operation.
Abstract:
A key enrollment method of a physically unclonable function (PUF) circuit including a plurality of PUF cells includes receiving a first level key from PUF cells, performing bit encoding on the first level key using a bit coding table based on Hamming weights of a plurality of bits in the first level key to generate a second level key, storing first helper data associated with the second level key in a non-volatile memory, performing block encoding on the second level key using an error correction code to generate a third level key, and storing second helper data associated with the third level key in the non-volatile memory.
Abstract:
A modular multiplier and a modular multiplication method are provided. The modular multiplier includes: a first register which stores a previous accumulation value calculated at a previous cycle; a second register which stores a previous quotient calculated at the previous cycle; a quotient generator which generates a quotient using the stored previous accumulation value output from the first register; and an accumulator which receives an operand, a bit value of a multiplier, the stored previous accumulation value, and the stored previous quotient to calculate an accumulation value in a current cycle, wherein the calculated accumulation value is updated to the first register, and the generated quotient is updated to the second register.
Abstract:
A multiplication method and a modular multiplier are provided. The multiplication method includes transforming a redundant-form multiplier by adding a recoding constant to the multiplier, performing recoding by using the transformed multiplier, and performing partial multiplication between the multiplier and a multiplicand using result values of the recoding.