Abstract:
Image sensors are provided. The image sensors may include a substrate including first, second, third and fourth regions, a first photoelectric conversion element in the first region, a second photoelectric conversion element in the second region, a third photoelectric conversion element in the third region, a fourth photoelectric conversion element in the fourth region, a first microlens at least partially overlapping both the first and second photoelectric conversion elements, and a second microlens at least partially overlapping both the third and fourth photoelectric conversion elements. The image sensors may also include a floating diffusion region and first, second and third pixel transistors configured to perform different functions from each other. Each of the first, second and third pixel transistors may be disposed in at least one of first, second, third and fourth pixel regions. The first pixel transistor may include multiple first pixel transistors.
Abstract:
An image sensor includes a photoelectric conversion unit configured to receive light to generate an electric charge and provide the electric charge to a first node, a transfer transistor configured to provide a voltage level of the first node to a floating diffusion node in response to a first signal, a booster configured to increase a voltage level of the floating diffusion node in response to a second signal, a source follower transistor configured to provide the voltage level of the floating diffusion node to a second node, and a selection transistor configured to provide a voltage level of the second node to a pixel output terminal in response to a third signal. After the selection transistor is turned on, the booster is enabled, and before the transfer transistor is turned on, the booster is disabled.
Abstract:
An image sensor and a method for fabricating the same are provided, in which the image sensor includes a substrate including a first sensing region having a photoelectric device therein, a boundary isolation film partitioning the first sensing region, an inner reflection pattern film within the substrate in the sensing region, an infrared filter on the substrate, and a micro lens on the infrared filter.
Abstract:
An image sensor and a method for fabricating the same are provided, in which the image sensor includes a substrate including a first sensing region having a photoelectric device therein, a boundary isolation film partitioning the first sensing region, an inner reflection pattern film within the substrate in the sensing region, an infrared filter on the substrate, and a micro lens on the infrared filter.
Abstract:
Image sensors are provided. The image sensors may include a substrate including first, second, third and fourth regions, a first photoelectric conversion element in the first region, a second photoelectric conversion element in the second region, a third photoelectric conversion element in the third region, a fourth photoelectric conversion element in the fourth region, a first microlens at least partially overlapping both the first and second photoelectric conversion elements, and a second microlens at least partially overlapping both the third and fourth photoelectric conversion elements. The image sensors may also include a floating diffusion region and first, second and third pixel transistors configured to perform different functions from each other. Each of the first, second and third pixel transistors may be disposed in at least one of first, second, third and fourth pixel regions. The first pixel transistor may include multiple first pixel transistors.
Abstract:
An image pixel includes a plurality of photodiodes formed in a semiconductor substrate, and a plurality of trenches. Each photodiode is configured to accumulate a plurality of photocharges corresponding to the intensity of light received at each photodiode through a microlens. The plurality of trenches is configured to electrically isolate the photodiodes from one another.
Abstract:
An image sensor such as a complementary metal-oxide-semiconductor (CMOS) image sensor and a method of manufacturing the same are provided. The CMOS image sensor includes: a semiconductor substrate including a first surface and a third surface formed by removing a part of the semiconductor substrate from a second surface opposite to the first surface; a plurality of active regions which are formed between the first surface and the third surface and each of which includes a photoelectric conversion element generating charges in response to light input through the third surface; and an isolation region vertically formed from either of the first and third surfaces to isolate the active regions from one another. When the CMOS image sensor is viewed from the above of the third surface, each of the active regions may have round corners and concave sides.
Abstract:
An image sensor and an image sensing method are provided. The image sensor includes a semiconductor substrate; a photoelectric converter comprising a bias unit, which comprises a first electrode and a second electrode, and an organic photoelectric conversion layer, which selectively absorbs light and converts the light into electrons; a via contacting the second electrode to connect the photoelectric converter with the semiconductor substrate; a storage node configured to store electrons; a read-out unit to converts charge transferred from the storage node into an image signal; a pixel array comprising a plurality of pixels, each of which comprises an intermediate insulating layer; and an output circuit configured to read out the image signal from the pixel array. The quantity of light received by the organic photoelectric conversion layer is adjusted by a bias change of the bias unit.
Abstract:
An image sensor is provided. The image sensor includes: a pixel array including a plurality of pixels arranged along rows and columns; and a row driver which drives the plurality of pixels for each of the rows, wherein each of the plurality of pixels includes a plurality of sub-pixels, each of the plurality of sub-pixels includes a plurality of photoelectric conversion elements sharing a floating diffusion area with each other, and a micro lens disposed to overlap the plurality of photoelectric conversion elements, a readout area is defined on the pixel array in accordance with a preset readout mode, and the row driver generates a drive signal for reading out signals provided from a photoelectric conversion element included in the readout area from among the plurality of photoelectric conversion elements, and provides the drive signal to the pixel array.
Abstract:
An image sensor includes a pixel array including a plurality of pixels arranged in a first direction and a second direction. Each pixel of the plurality of pixels includes a plurality of photodiodes disposed adjacent to one another in at least one of the first direction and the second direction. The image sensor further includes a control logic configured to generate image data by obtaining pixel signals from the plurality of pixels, and read a pixel voltage corresponding to charges generated by two or more of the plurality of photodiodes included in one of the plurality of pixels, at substantially the same time.