Abstract:
An apparatus includes a near field transducer positioned adjacent to an air bearing surface, a first magnetic pole, a heat sink positioned between the first magnetic pole and the near field transducer, and a diffusion barrier positioned between the near field transducer and the first magnetic pole. The diffusion barrier can be positioned adjacent to the magnetic pole or the near field transducer.
Abstract:
A method of controlling a shape and size of at least one solder joint of a magnetic recording head that includes a trailing surface and a plurality of bond pads, wherein each bond pad comprises a base layer comprising a top surface and a top edge, the method including the steps of forming at least one solder dam by covering a portion of the top surface of the base layer of at least one of the bond pads with a coating layer that comprises a nonwettable, electrically conductive material positioned adjacent to the top edge of at least one of the bond pads, thereby defining a coated portion and an uncoated portion of the base layer, and applying solder material to the uncoated portion of the base layer adjacent to the solder dam so that the coating layer constrains movement of the solder material beyond the uncoated portion.
Abstract:
An apparatus has a main pole layer of magnetic material, a second layer of magnetic material, a first gap layer of non-magnetic material between the main pole layer and the second layer of magnetic material, and a second gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material. The second gap layer of non-magnetic material can be directly adjacent to the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. A method of manufacturing such a device is also described.
Abstract:
An apparatus including a near field transducer positioned adjacent to an air bearing surface, the near field transducer including an electrically conductive nitride; a first magnetic pole; and a heat sink, a diffusion barrier layer, or both positioned between the first magnetic pole and the near field transducer, wherein the heat sink, the diffusion barrier or both include rhodium (Rh) or an alloy thereof; ruthenium (Ru) or an alloy thereof titanium (Ti) or an alloy thereof tantalum (Ta) or an alloy thereof tungsten (W) or an alloy thereof borides; nitrides; transition metal oxides; or palladium (Pd) or an alloy thereof.
Abstract:
In accordance with one embodiment, an apparatus can be configured that includes a main pole layer of magnetic material; a second layer of magnetic material; a first gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material; a second gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material; and wherein the second gap layer of non-magnetic material is disposed directly adjacent to the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. In accordance with one embodiment, a method of manufacturing such a device may also be utilized.
Abstract:
In accordance with one embodiment, a method may be implemented by depositing a non-magnetic gap layer of material above a main pole layer of magnetic material; depositing a sacrificial layer of material above the non-magnetic gap layer of material; etching a portion of the sacrificial layer of material while not entirely removing the sacrificial layer of material; and depositing additional sacrificial material to the etched sacrificial layer.
Abstract:
A write pole structure disclosed herein includes a write pole, a trailing shield, and a high magnetic moment (HMM) material layer on a surface of the trailing shield facing the write pole.
Abstract:
A magneto-resistive reader includes a first magnetic shield element, a second magnetic shield element and a magneto-resistive sensor stack separating the first magnetic shield element from the second magnetic shield element. The first shield element includes two ferromagnetic anisotropic layers separated by a grain growth suppression layer.
Abstract:
A hard disk drive (HDD) includes a heat-assisted magnetic recording (HAMR) head. The HAMR head includes one or more features comprising a nanoparticle-reinforced plasmonic matrix. The nanoparticle-reinforced plasmonic matrix comprises a plasmonic metal and a plurality of nanoparticles dispersed in the plasmonic metal. The nanoparticles comprise a transparent conductive oxide.
Abstract:
An apparatus comprises a head transducer and a resistive temperature sensor provided on the head transducer. The resistive temperature sensor comprises a first layer comprising a conductive material and having a temperature coefficient of resistance (TCR) and a second layer comprising at least one of a specular layer and a seed layer. A method is disclosed to fabricate such sensor with a laminated thin film structure to achieve a large TCR. The thicknesses of various layers in the laminated thin film are in the range of few to a few tens of nanometers. The combinations of the deliberately optimized multilayer thin film structures and the fabrication of such films at the elevated temperatures are disclosed to obtain the large TCR.