Abstract:
An array substrate is provided. The array substrate comprises a substrate, a common electrode, an insulating layer, a pixel transparent electrode, and a sharing capacitor transparent electrode, wherein a separating area is disposed between the pixel transparent electrode and the sharing capacitor transparent electrode; the common electrode extends to the separating area, and is exposed on the surface of the separating area by at least one groove which is on the insulating layer. Thereby a defectiveness of a product due to an ITO (indium tin oxide) remaining on the surface of the array substrate can easily detected.
Abstract:
A display panel is disclosed and includes an active area and a non-active area. A first, a second, a third, a fourth, a fifth, and a sixth charging scanning lines and a first, a second, a third, a fourth, a fifth, and a sixth charge-sharing scanning lines of an array unit on the active area are connected to a first, a second, a third, a fourth, a fifth, and a sixth pixel row, respectively. A first, a second, and a third detection lines on the non-active area are connected to the active area.
Abstract:
An array substrate and a detecting circuit thereof are disclosed. The detecting circuit comprises a detecting unit, which comprises a first to a sixth detecting lines; a switching signal access unit, used for receiving a switching control signal; a detecting signal access unit, used for receiving a first detecting signal or a second detecting signal; and a switching unit, comprising a first switching line and a second switching line, which are connected among the detecting unit, the switching signal access unit and the detecting signal access unit. The array substrate comprises an active area and a detecting circuit.
Abstract:
The present invention provides a manufacturing method of transparent electrode and mask thereof. The method includes: forming a film on a glass substrate, and coating photo-resist on film; irradiating photo-resist through mask, wherein the mask at corresponding active area of liquid crystal panel forming, from outer area to inner area, at least a first area and a second area, gap of pattern corresponding to transparent electrode in first area being first gap, gap of pattern in second area being second gap, first gap being greater than corresponding default gap, difference between first gap and corresponding default gap being greater than difference between second gap and corresponding default gap: and performing photolithography and etching processes on substrate after exposure to form transparent electrodes on substrate. As such, the present invention can reduce gap errors of formed transparent electrodes in entire active area to improve display effect.
Abstract:
Provided is a liquid crystal display panel used in a curved display device and the curved display device. This belongs to the field of display technologies, and solves the technical problem of inferior display caused by inhomogeneous cell thickness that would easily occur to an existing curved display device. The liquid crystal display panel includes: an upper substrate provided with a plurality of spacers thereon; and a lower substrate provided with a plurality of bosses thereon, in one-to-one correspondence with the plurality of spacers. At least one of the plurality of spacers has a distance to a central axis of the liquid crystal display panel shorter than a distance from its corresponding boss to the central axis of the liquid crystal display panel. The liquid crystal display panel can be used in large-sized curved display devices such as liquid crystal display televisions.
Abstract:
A spacer manufacturing device is disclosed. The device includes a photo mask having a central light-transmitting region and a peripheral light-transmitting region disposed at a periphery of the central light-transmitting region; and an exposure device right opposite to the photo mask. Light emitted from the exposure device is irradiated to a negative photoresist material after passing through the photo mask, the light intensity passing through the peripheral light-transmitting region is less than the light intensity passing through the central light-transmitting region. A spacer is also disclosed. Only one exposure process is required to realize the spacer having a convex-shaped cross section. The process is simple and the manufacturing cost is low. At the same time, flatness of the convex shoulder of the spacer having a convex-shaped cross section is adjustable, which can satisfy the requirement for manufacturing spacers having different specifications.
Abstract:
A display panel and a driving method for the same are provided. The display panel comprises at least one data line and pixel row units. The pixel row unit comprises a common line, a first pixel, a second pixel, a charge control line, a sharing control line, a fourth switch, a second sharing capacitor, and a switch control line. The charge control line is configured to turn on/off the first and second switches. The sharing control line is configured to turn on/off a third switch. The switch control line is configured to turn on/off a fourth switch.
Abstract:
An array substrate and a detecting circuit thereof are disclosed. The detecting circuit comprises a detecting unit, which comprises a first to a sixth detecting lines; a switching signal access unit, used for receiving a switching control signal; a detecting signal access unit, used for receiving a first detecting signal or a second detecting signal; and a switching unit, comprising a first switching line and a second switching line, which are connected among the detecting unit, the switching signal access unit and the detecting signal access unit. The array substrate comprises an active area and a detecting circuit.
Abstract:
A patterned retarder 3D liquid crystal display is disclosed. The liquid crystal display includes a display panel, a polarizer, and a patterned retarder film. The display panel includes a first substrate and a second substrate spaced apart from each other. The second substrate includes an up stutter and a down surface, and the up surface is farther to the first substrate than the down surface. A black matrix is arranged on the down surface of the second substrate. A mask is arranged on a first surface or the second surface of the polarizer. The first surface of the polarizer is adjacent to the patterned retarder film and the second surface of the polarizer is adjacent to the second substrate. The mask corresponds to portions of the black matrix. In addition, a manufacturing method of the patterned retarder 3D liquid crystal display is also disclosed.
Abstract:
A spacer manufacturing device is disclosed. The device includes a photo mask having a central light-transmitting region and a peripheral light-transmitting region disposed at a periphery of the central light-transmitting region; and an exposure device right opposite to the photo mask. Light emitted from the exposure device is irradiated to a negative photoresist material after passing through the photo mask, the light intensity passing through the peripheral light-transmitting region is less than the light intensity passing through the central light-transmitting region. A spacer is also disclosed. Only one exposure process is required to realize the spacer having a convex-shaped cross section. The process is simple and the manufacturing cost is low. At the same time, flatness of the convex shoulder of the spacer having a convex-shaped cross section is adjustable, which can satisfy the requirement for manufacturing spacers having different specifications.