摘要:
A vertebral body spacer of the present invention is used by being inserted between a vertebral body and a vertebral body (intervertebral space). The vertebral body spacer has a block body constituted of titanium or a titanium alloy as a main component thereof, and provided with a pair of contact surfaces to be made contact with the vertebral body and the vertebral body. The block body includes needle parts formed into a needle shape having both end portions and a porous part having through holes passing through the porous part in a thickness direction thereof, and a porosity of at least a surface of the porous part is larger than a porosity of each of the needle parts. The needle parts are inserted into the through holes so that the both end portions are projected from the contact surfaces.
摘要:
A vertebral body spacer of the present invention is used by being inserted between a vertebral body and a vertebral body (intervertebral space). The vertebral body spacer has a block body constituted of titanium or a titanium alloy as a main component thereof, and provided with a pair of contact surfaces to be made contact with the vertebral body and the vertebral body. The block body includes dense sheets having a dense part on at least a surface thereof and porous sheets having a porous part on at least a surface thereof. The porous part has a larger porosity than a porosity of the dense part. Each of the porous sheets is sandwiched between the pair of dense sheets. According to the present invention, it is possible to maintain an appropriate size between the vertebral bodies (intervertebral space).
摘要:
A plurality of porous metal bodies which are bonded with each other at bonded-boundary surfaces parallel to a first direction, each of the porous metal bodies has a three-dimensional network structure formed from a continuous skeleton in which a plurality of pores are interconnected so as to have a porosity rate different from another porous metal body, the pores formed in at least the porous metal body having the higher porosity rate are formed to have flat shapes which are long along a direction parallel to the bonded-boundary surface and short along a direction orthogonal to the bonded-boundary surface, entire porosity rate of a bonded body of the porous metal bodies is 50% to 92%, a compressive strength compressing in the direction parallel to the bonded-boundary surface is 1.4 times to 5 times of a compressive strength compressing in the direction orthogonal to the bonded-boundary surface.
摘要:
This method for producing porous sintered aluminum includes: mixing aluminum powder with a sintering aid powder containing titanium to obtain a raw aluminum mixed powder; mixing the raw aluminum mixed powder with a water-soluble resin binder, water, and a plasticizer containing at least one selected from polyhydric alcohols, ethers, and esters to obtain a viscous composition; drying the viscous composition in a state where air bubbles are mixed therein to obtain a formed object prior to sintering; and heating the formed object prior to sintering in a non-oxidizing atmosphere, wherein when a temperature at which the raw aluminum mixed powder starts to melt is expressed as Tm (° C.), a temperature T (° C.) of the heating fulfills Tm−10 (° C.)≦T≦685 (° C.).
摘要:
A vertebral body spacer of the present invention is used by being inserted between a vertebral body and a vertebral body (intervertebral space). The vertebral body spacer has a block body constituted of titanium or a titanium alloy as a main component thereof, and provided with a pair of contact surfaces to be made contact with the vertebral body and the vertebral body. The block body includes a frame-shaped dense part and a porous part provided inside the dense part, and a porosity of at least a surface of the porous part is larger than a porosity of the dense part. According to the present invention, it is possible to maintain an appropriate size between the vertebral bodies (intervertebral space).
摘要:
This method for producing porous sintered aluminum includes: mixing aluminum powder with a sintering aid powder containing titanium to obtain a raw aluminum mixed powder; mixing the raw aluminum mixed powder with a water-soluble resin binder, water, and a plasticizer containing at least one selected from polyhydric alcohols, ethers, and esters to obtain a viscous composition; drying the viscous composition in a state where air bubbles are mixed therein to obtain a formed object prior to sintering; and heating the formed object prior to sintering in a non-oxidizing atmosphere, wherein when a temperature at which the raw aluminum mixed powder starts to melt is expressed as Tm (° C.), a temperature T (° C.) of the heating fulfills Tm−10 (° C.)≦T≦685 (° C.).
摘要:
A vertebral body spacer of the present invention is used by being inserted between a vertebral body and a vertebral body (intervertebral space). The vertebral body spacer has a block body constituted of titanium or a titanium alloy as a main component thereof, and provided with a pair of contact surfaces to be made contact with the vertebral body and the vertebral body. The block body includes a frame-shaped dense part and a porous part provided inside the dense part, and a porosity of at least a surface of the porous part is larger than a porosity of the dense part. According to the present invention, it is possible to maintain an appropriate size between the vertebral bodies (intervertebral space).
摘要:
A vertebral body spacer of the present invention is used by being inserted between a vertebral body and a vertebral body (intervertebral space). The vertebral body spacer has a block body constituted of titanium or a titanium alloy as a main component thereof, and provided with a pair of contact surfaces to be made contact with the vertebral body and the vertebral body. The block body includes needle parts formed into a needle shape having both end portions and a porous part having through holes passing through the porous part in a thickness direction thereof, and a porosity of at least a surface of the porous part is larger than a porosity of each of the needle parts. The needle parts are inserted into the through holes so that the both end portions are projected from the contact surfaces.
摘要:
This method for producing porous sintered aluminum includes: mixing aluminum powder with a sintering aid powder containing a sintering aid element to obtain a raw aluminum mixed powder; forming the raw aluminum mixed powder into a formed object prior to sintering having pores; and heating the formed object prior to sintering in a non-oxidizing atmosphere to produce porous sintered aluminum, wherein the sintering aid element is titanium, and when a temperature at which the raw aluminum mixed powder starts to melt is expressed as Tm (° C.), then a temperature T (° C.) of the heating fulfills Tm-10 (° C.)≦T≦685 (° C.).