Abstract:
In a semiconductor device of the present invention, a MOS transistor is disposed in an elliptical shape. Linear regions in the elliptical shape are respectively used as the active regions, and round regions in the elliptical shape is used respectively as the inactive regions. In each of the inactive regions, a P type diffusion layer is formed to coincide with a round shape. Another P type diffusion layer is formed in a part of one of the inactive regions. These P type diffusion layers are formed as floating diffusion layers, are capacitively coupled to a metal layer on an insulating layer, and assume a state where predetermined potentials are respectively applied thereto. This structure makes it possible to maintain current performance of the active regions, while improving the withstand voltage characteristics in the inactive regions.
Abstract:
The present invention is related to a disc cartridge in which an optical disc, an inner shell and shutter members are housed in a main cartridge body unit, formed by abutting and combining upper and lower shells and in which the inner shell is run in rotation to cause the shutter members to open or close an aperture provided in the main cartridge body unit. The inner shell is formed by a resin molding portion comprised of a first molded portion for forming the inner shell and a second molded portion connected to the first molded portion. The second molded portion is provided at a position forming the aperture in the inner shell and is connected to the first molded portion through a flanged thin-walled section. The inner shell is formed by severing the second molded portion and the flanged thin-walled section.
Abstract:
In a conventional semiconductor device, there has been a problem that, in a region where a wiring layer to which a high electric potential is applied traverses a top surface of an isolation region, the withstand voltage is deteriorated. In a semiconductor device of the present invention, an epitaxial layer is deposited on a substrate, and an LDMOSFET is formed in one region divided by an isolation region. In a region where a wiring layer connected to a drain electrode traverses a top surface of the isolation region, a conductive plate having a ground electric potential and another conductive plate in a floating state are formed under the wiring layer. With this structure, electric field is reduced in the vicinity of the isolation region under the wiring layer, whereby a withstand voltage of the LDMOSFET is increased.
Abstract:
A method for producing an inner shell used for a disc cartridge in which an optical disc, an inner shell and shutter members are housed in a main cartridge body unit. The inner shell provided in the main cartridge body unit includes a first molded portion, provided with an aperture, a second molded portion having a resin injection port and molded at a position where the aperture is formed, and a flanged thin-walled section connecting the first and second molded portions to each other. The method includes the steps of injecting molten resin into a cavity defined by a fixed metal die and a movable metal die for molding the first molded portion, the second molded portion, and the flanged thin-walled section, and severing the flanged thin-walled section by a punch provided to the movable metal die before the molten resin injected into the cavity is cooled and solidified.
Abstract:
In a conventional semiconductor device, there is a problem that an N-type diffusion region provided for protecting an element from an overvoltage is narrow and a breakdown current is concentrated so that a PN junction region for protection is broken. In a semiconductor device of the present invention, an N-type buried diffusion layer is formed across a substrate and an epitaxial layer. A P-type buried diffusion layer is formed across a wider region on an upper surface of the N-type buried diffusion layer so that a PN junction region for overvoltage protection is formed. A P-type diffusion layer is formed so as to be connected to the P-type diffusion layer. A breakdown voltage of the PN junction region is lower than a breakdown voltage between a source and a drain. With this structure, the concentration of the breakdown current is prevented so that the semiconductor device can be protected from the overvoltage.
Abstract:
To enable the reduction of ON-state resistance in a state in which the withstand voltage is secured, a semiconductor device according to the invention is provided with a gate electrode formed so that the gate electrode ranges from a gate oxide film formed on an N-type well region formed in a P-type semiconductor substrate to a selective oxide film, a P-type source region formed so that the source region is adjacent to the gate electrode, a P-type drain region formed in a position apart from the gate electrode and a P-type drift region (an LP layer) formed so that the drift region surrounds the drain region, and is characterized in that a P-type impurities layer (an FP layer) is formed so that the impurities layer is adjacent to the drain region.
Abstract:
A semiconductor device has a gate electrode formed on a P type semiconductor substrate via gate oxide films. A first low concentration (LN type) drain region is made adjacent to one end of the gate electrode. A second low concentration (SLN type) drain region is formed in the first tow concentration drain region so that the second low concentration drain region is very close to the outer boundary of the second low concentration drain region and has at least a higher impurity concentration than the first low concentration drain region. A high concentration (N+ type) source region is formed adjacent to the other end of said gate electrode, and a high concentration (N+ type) drain region is formed in the second low concentration drain region having the designated space from one end of the gate electrode.
Abstract:
A tape reel in which the reliability while running a magnetic tape at high speed is improved and a tape cartridge including the same. By configuring an annular chucking gear (152b) formed in a center section of a bottom surface of a lower flange (152) of a tape reel (150) with a perpendicular wall, idling and floating of the tape reel is suppressed, and thus, the running stability and linearity of the magnetic tape during high-speed rotation of the tape reel (150) are secured, and the reliability of the tape cartridge with regard to high speed operations is improved.
Abstract:
To provide a new shutter open/close mechanism (26) suitable for use with a cartridge body whose front end is formed in an arbitrary shape for easily knowing a correct direction of insertion in a recorder/player, a guide recess (36) to support a shutter plate (25) movably is formed on a main side of the cartridge body (6) to be oblique relative to the width of the cartridge body (6). The shutter open/close mechanism (26) includes a guide member (31) supporting the shutter plate (25) and movably engaged in the guide recess (36), an operating member (32) to move the guide member (31), a transmission member (33) connecting the guide member (31) and operating member (32) to each other to transmit an operating force from the operating member (32) to the guide member (31), and support surfaces (37) formed on the cartridge body (6) to support the operating member (32) movably. The shutter open/close mechanism 26 further includes a shutter locking mechanism 38 disposed at the lateral side of the cartridge body (6) to lock the shutter plate (25) against movement.
Abstract:
In the manufacturing process of recording media by transcribing information signals formed on a stamper onto the substrate, high-quality transcriptions must be achieved without causing any thermal deformations or warps. To this end, when the convexconcaves formed on a main surface of the stamper representing information signals are transcribed onto the substrate, a main surface of said substrate and a main surface of said stamper where the convexconcaves are formed are brought into contact facing each other, and said substrate and said stamper are pressurized with a prescribed pressure as they remain in contact, and in addition the temperature of only the contact surface layer of said substrate with said stamper is raised.