摘要:
An object is to obtain a desired threshold voltage of a thin film transistor using an oxide semiconductor. Another object is to suppress a change of the threshold voltage over time. Specifically, an object is to apply the thin film transistor to a logic circuit formed using a transistor having a desired threshold voltage. In order to achieve the above object, thin film transistors including oxide semiconductor layers with different thicknesses may be formed over the same substrate, and the thin film transistors whose threshold voltages are controlled by the thicknesses of the oxide semiconductor layers may be used to form a logic circuit. In addition, by using an oxide semiconductor film in contact with an oxide insulating film formed after dehydration or dehydrogenation treatment, a change in threshold voltage over time is suppressed and the reliability of a logic circuit can be improved.
摘要:
A semiconductor device having a structure which enables sufficient reduction in parasitic capacitance is provided. In addition, the operation speed of thin film transistors in a driver circuit is improved. In a bottom-gate thin film transistor in which an oxide insulating layer is in contact with a channel formation region in an oxide semiconductor layer, a source electrode layer and a drain electrode layer are formed in such a manner that they do not overlap with a gate electrode layer. Thus, the distance between the gate electrode layer and the source electrode layer and between the gate electrode layer and the drain electrode layer are increased; accordingly, parasitic capacitance can be reduced.
摘要:
It is an object to manufacture a highly reliable display device using a thin film transistor having favorable electric characteristics and high reliability as a switching element. In a bottom gate thin film transistor including an amorphous oxide semiconductor, an oxide conductive layer having a crystal region is formed between an oxide semiconductor layer which has been dehydrated or dehydrogenated by heat treatment and each of a source electrode layer and a drain electrode layer which are formed using a metal material. Accordingly, contact resistance between the oxide semiconductor layer and each of the source electrode layer and the drain electrode layer can be reduced; thus, a thin film transistor having favorable electric characteristics and a highly reliable display device using the thin film transistor can be provided.
摘要:
An object is to provide a semiconductor device provided with a thin film transistor having excellent electric characteristics using an oxide semiconductor layer. An In—Sn—O-based oxide semiconductor layer including SiOX is used for a channel formation region. In order to reduce contact resistance between the In—Sn—O-based oxide semiconductor layer including SiOX and a wiring layer formed from a metal material having low electric resistance, a source region or drain region is formed between a source electrode layer or drain electrode layer and the In—Sn—O-based oxide semiconductor layer including SiOX. The source region or drain region and a pixel region are formed using an In—Sn—O-based oxide semiconductor layer which does not include SiOX.
摘要:
An object is to provide a semiconductor device provided with a thin film transistor having excellent electric characteristics using an oxide semiconductor layer. An In—Sn—O-based oxide semiconductor layer including SiOX is used for a channel formation region. In order to reduce contact resistance between the In—Sn—O-based oxide semiconductor layer including SiOX and a wiring layer formed from a metal material having low electric resistance, a source region or drain region is formed between a source electrode layer or drain electrode layer and the In—Sn—O-based oxide semiconductor layer including SiOX. The source region or drain region and a pixel region are formed using an In—Sn—O-based oxide semiconductor layer which does not include SiOX.
摘要:
An oxide semiconductor layer with excellent crystallinity is formed to enable manufacture of transistors with excellent electrical characteristics for practical application of a large display device, a high-performance semiconductor device, etc. By first heat treatment, a first oxide semiconductor layer is crystallized. A second oxide semiconductor layer is formed over the first oxide semiconductor layer. By second heat treatment, an oxide semiconductor layer including a crystal region having the c-axis oriented substantially perpendicular to a surface is efficiently formed and oxygen vacancies are efficiently filled. An oxide insulating layer is formed over and in contact with the oxide semiconductor layer. By third heat treatment, oxygen is supplied again to the oxide semiconductor layer. A nitride insulating layer containing hydrogen is formed over the oxide insulating layer. By fourth heat treatment, hydrogen is supplied at least to an interface between the second oxide semiconductor layer and the oxide insulating layer.
摘要:
To provide a transistor having a favorable electric characteristics and high reliability and a display device including the transistor. The transistor is a bottom-gate transistor formed using an oxide semiconductor for a channel region. An oxide semiconductor layer subjected to dehydration or dehydrogenation through heat treatment is used as an active layer. The active layer includes a first region of a superficial portion microcrystallized and a second region of the rest portion. By using the oxide semiconductor layer having such a structure, a change to an n-type, which is attributed to entry of moisture to the superficial portion or elimination of oxygen from the superficial portion, and generation of a parasitic channel can be suppressed. In addition, contact resistance between the oxide semiconductor layer and source and drain electrodes can be reduced.
摘要:
A thin film transistor including an oxide semiconductor with favorable electrical characteristics is provided. The thin film transistor includes a gate electrode provided over a substrate, a gate insulating film provided over the gate electrode, an oxide semiconductor film provided over the gate electrode and on the gate insulating film, a metal oxide film provided on the oxide semiconductor film, and a metal film provided on the metal oxide film. The oxide semiconductor film is in contact with the metal oxide film, and includes a region whose concentration of metal is higher than that of any other region in the oxide semiconductor film (a high metal concentration region). In the high metal concentration region, the metal contained in the oxide semiconductor film may be present as a crystal grain or a microcrystal.
摘要:
An object is to provide an oxide semiconductor having stable electric characteristics and a semiconductor device including the oxide semiconductor. A manufacturing method of a semiconductor film by a sputtering method includes the steps of holding a substrate in a treatment chamber which is kept in a reduced-pressure state; heating the substrate at lower than 400° C.; introducing a sputtering gas from which hydrogen and moisture are removed in the state where remaining moisture in the treatment chamber is removed; and forming an oxide semiconductor film over the substrate with use of a metal oxide which is provided in the treatment chamber as a target. When the oxide semiconductor film is formed, remaining moisture in a reaction atmosphere is removed; thus, the concentration of hydrogen and the concentration of hydride in the oxide semiconductor film can be reduced. Thus, the oxide semiconductor film can be stabilized.
摘要:
An object is to provide a thin film transistor and a method for manufacturing the thin film transistor including an oxide semiconductor with a controlled threshold voltage, high operation speed, a relatively easy manufacturing process, and sufficient reliability. An impurity having influence on carrier concentration in the oxide semiconductor layer, such as a hydrogen atom or a compound containing a hydrogen atom such as H2O, may be eliminated. An oxide insulating layer containing a large number of defects such as dangling bonds may be formed in contact with the oxide semiconductor layer, such that the impurity diffuses into the oxide insulating layer and the impurity concentration in the oxide semiconductor layer is reduced. The oxide semiconductor layer or the oxide insulating layer in contact with the oxide semiconductor layer may be formed in a deposition chamber which is evacuated with use of a cryopump whereby the impurity concentration is reduced.