Abstract:
A gaze tracking system captures images of a vehicle operator's face using an image sensor device positioned within a vehicle. The gaze tracking system may be detect facial features from each image and track the position of facial features over time. The gaze tracking system may use the detected facial features to track the vehicle operator's head pose and gaze direction. The images may be captured and analyzed in near-real time. By tracking movement of the driver's head and eyes over time, the gaze analysis system may predict or estimate head position and/or gaze direction when one or more facial features are not detectable. The gaze tracking system may generate a report regarding the vehicle operator's gaze distribution. The report may be saved to memory and may be graphically displayed at a screen.
Abstract:
The method, system, and computer-readable medium cause the monitoring of a vehicle operator during the course of vehicle operation to determine whether the vehicle operator is impaired and causes a mitigating response when an impairment is determined to exist. The vehicle operator, the environment surrounding the vehicle, or forces acting on the vehicle may be monitored using a variety of sensors, including optical sensors, accelerometers, or biometric sensors (e.g., skin conductivity, heart rate, or voice modulation). When the vehicle operator is determined to be impaired, an alert or other mitigating response is implemented, based on the sensor data. In some embodiments, mitigating actions may be taken to avoid vehicle operator impairment. In further embodiments, a training period may be used to generate a profile for the vehicle operator.
Abstract:
A method includes, for each of two or more driving sessions in which a student driver operates a vehicle, gathering driving skill data indicative of at least one of behavior of the student driver, acceleration of the vehicle, braking of the vehicle, or steering of the vehicle, and generating a driving session report. The method further includes causing the driving session reports corresponding to the two or more driving sessions to be displayed to a driving instructor, and receiving comments from the driving instructor about the two or more driving sessions of the student driver. Still further, the method includes storing the driving session reports corresponding to the two or more driving sessions along with the received comments from the driving instructor.
Abstract:
The method, system, and computer-readable medium causes the monitoring of a vehicle operator during the course of vehicle operation to determine whether the vehicle operator is impaired and causes a mitigating response when an impairment is determined to exist. The vehicle operator, the environment surrounding the vehicle, or forces acting on the vehicle may be monitored using a variety of sensors, including optical sensors, accelerometers, or biometric sensors (e.g., skin conductivity, heart rate, or voice modulation). When the vehicle operator is determined to be impaired, an alert or other mitigating response is implemented, based on the sensor data. In some embodiments, mitigating actions may be taken to avoid vehicle operator impairment.
Abstract:
The method, system, and computer-readable medium causes the monitoring of a vehicle operator during the course of vehicle operation to determine whether the vehicle operator is impaired and causes a mitigating response when an impairment is determined to exist. The vehicle operator, the environment surrounding the vehicle, or forces acting on the vehicle may be monitored using a variety of sensors, including optical sensors, accelerometers, or biometric sensors (e.g., skin conductivity, heart rate, or voice modulation). When the vehicle operator is determined to be impaired, an alert or other mitigating response is implemented, based on the sensor data. In some embodiments, mitigating actions may be taken to avoid vehicle operator impairment.
Abstract:
The method, system, and computer-readable medium facilitates monitoring a vehicle operator, the environment ahead of the vehicle, and/or forces acting on the vehicle during the course of vehicle operation to determine whether the vehicle operator is impaired (e.g., distracted, drowsy, intoxicated), alerting the vehicle operator when impairment is detected, and log data relating to vehicle operator impairment for further analysis. The method, system, and computer-readable medium may monitor the vehicle operator, the environment ahead of the vehicle, and/or forces acting on the vehicle using either or both of optical sensors or accelerometers. In particular, one optical sensor may monitor the vehicle operator to detect eye blinks, head nods, head rotations, and/or gaze fixation. Another optical sensor may monitor the road ahead of the vehicle to detect lane deviation, lane centering, and time to collision. The accelerometers may detect acceleration in the direction of vehicle travel and/or lateral acceleration.
Abstract:
Systems and methods are provided for controlling operation of a vehicle. An example system for controlling operation of a vehicle includes one or more data collection components and one or more processors. The one or more data collection components are configured to collect data representative of a physical configuration of an interior vehicle component. The one or more processors are configured to access the collected data, determine, by processing the collected data, the physical configuration of the interior vehicle component, select a manner of operation based upon the determined physical configuration of the interior vehicle component, and cause the vehicle to operate according to the manner of operation.
Abstract:
Systems and methods for real-time detection and mitigation anomalous behavior of a remote vehicle are provided, e.g., vehicle behavior that is consistent with distracted or unexpectedly disabled driving. On-board and off-board sensors associated with a subject vehicle may monitor the subject vehicle's environment, and behavior characteristics of a remote vehicle operating within the subject vehicle's environment may be determined based upon collected sensor data. The remote vehicle's behavior characteristics may be utilized to detect or determine the presence of anomalous behavior, which may be anomalous for the current contextual conditions of the vehicles' environment. Mitigating actions for detected remote vehicle anomalous behaviors may be suggested and/or automatically implemented at the subject vehicle and/or at proximate vehicles to avoid or reduce the risk of accidents, injury, or death resulting from the anomalous behavior. In some situations, authorities may be notified.
Abstract:
Systems and methods for real-time detection and mitigation anomalous behavior of a remote vehicle are provided, e.g., vehicle behavior that is consistent with distracted or unexpectedly disabled driving. On-board and off-board sensors associated with a subject vehicle may monitor the subject vehicle's environment, and behavior characteristics of a remote vehicle operating within the subject vehicle's environment may be determined based upon collected sensor data. The remote vehicle's behavior characteristics may be utilized to detect or determine the presence of anomalous behavior, which may be anomalous for the current contextual conditions of the vehicles' environment. Mitigating actions for detected remote vehicle anomalous behaviors may be suggested and/or automatically implemented at the subject vehicle and/or at proximate vehicles to avoid or reduce the risk of accidents, injury, or death resulting from the anomalous behavior. In some situations, authorities may be notified.
Abstract:
An alert may be triggered to notify a pedestrian of the current operational mode of a nearby vehicle. For instance, a vehicle may operate in an autonomous or manual mode, and may occasionally switch from one mode to the other. A pedestrian who may be unaware of the current operational mode of a nearby vehicle may notice the alert and proceed accordingly. In one embodiment, an indication of the current operational mode of the nearby vehicle may be transmitted to an electronic device associated with the pedestrian. The device may generate a notification to the pedestrian based on the current operational mode. In an additional or alternative embodiment, the alert may be transmitted by the vehicle externally to be visible or audible to the pedestrian. In some embodiments, the alert may be triggered only for particular operational modes (e.g., only for autonomous or only for manual).