Abstract:
An additional control voltage is used to adjust then operating point of a power amplifier. The amplitude of the control voltage is a measure of the maximum gain needed during the current time slot and which is already provided to the power amplifier before the beginning of the active time slot. This enables an individual adjustment of the operating point so that the power consumption can be reduced.
Abstract:
A circuit chip has an apparatus for an electrically conductive connection of a terminal thereof to an external reference potential. The apparatus has a parallel connection of a bonding wire and a semiconductor area formed in a substrate of the circuit chip. The semiconductor area is doped higher than the substrate of the circuit chip.
Abstract:
A controllable LC oscillator circuit has a resonant circuit including an inductance and a capacitance disposed in parallel. The oscillator is driven by an amplifier and the inductance is produced using coupled coils. The effective inductance of the coupled coils can be set by changing a gain of the amplifier, and a magnitude of the coupling factor of the coupled coils defines a magnitude of an adjustable frequency band of the oscillator.
Abstract:
In a circuit for determining and storing an average signal value, an overlaid dc voltage part is identified and subtracted from the actual signal. To this end, an all-pass filter with which both a transfer response is optimized and the error is minimized is utilized in a signal processing means in addition to a low-pass filter.
Abstract:
A circuit arrangement for setting the operating point of at least one signal transistor (2) driven by alternating signals (1), with a current source (3) that is coupled to a supply potential (8) and to the control input of the signal transistor (2). A regulating transistor (4) has a load path coupled to a reference potential (9) and to the control input of the signal transistor (2). A resistor (5) is connected to the control input of the regulating transistor (4) and to the setting input of the signal transistor (2). A capacitor (6) is connected between the control input of the regulating transistor (4) and the reference potential (9).
Abstract:
A circuit configuration for parameter adjustment has one or more first analog multipliers which receive an input signals and a control signal which cooresponds to a parameter, and which output output signals. A second multiplier, which is identical to the first multiplier, receives a first reference signal and a second control signal which corresponds to the first control signal, and outputs an output signal. A regulating device compares the output signal of the second multiplier with a second reference signal and derives the control signals therefrom.
Abstract:
A blood pump (20) includes a stator assembly comprising a motor stator (52), a fluid inlet (24), and a fluid outlet (26). A rotor assembly includes a motor rotor (54) and an impeller (40) rotatable about an axis (44) to move fluid from the inlet (24) to the outlet (26). An outflow sheath (300) directs the flow along the outside of the pump (20).
Abstract:
A blood pump (26) includes a stator assembly including a fluid inlet (24) and a fluid outlet (26). A rotor assembly (120) includes an impeller (40) rotatable about an axis (44) to move fluid from the inlet (24) to the outlet (26). A motor (50) imparts rotation of the impeller (40) about the axis (44). The motor (50) includes a motor stator (52) fixed to the stator assembly (122), a motor rotor (54) fixed to the rotor assembly (120), and a radial motor gap (34) between the stator (52) and the rotor (54). The pump (20) is configured to direct a mixed blood flow from the fluid inlet (24) to the fluid outlet (26) and a wash flow through the motor gap (34).
Abstract:
A method for modeling a plurality of quantities continuously accumulating over time by performing for each quantity of the plurality of quantities the following steps: determining separate time intervals and further determining the quantity accumulated in each time interval, and representing the separate time intervals and the quantity accumulated in each time interval in a table comprising a plurality of related data elements corresponding to the separate time intervals, each data element comprising a point in time in predetermined relation to the time interval and the quantity accumulated in the time interval.
Abstract:
A reference stage is provided in order to compensate for manufacturing tolerances, for example relating to the threshold voltage of a transistor. This reference stage has a transistor which is a physical equivalent of the transistor to be trimmed in a radio-frequency amplifier stage. In particular, this reference transistor has the same electrical direct current characteristics as the amplifier transistor. A reference voltage can be tapped off across a resistor on the reference stage and can be supplied to a control amplifier which uses this reference voltage to set the operating point of the radio-frequency amplifier transistor such that manufacturing tolerances are compensated for. Such radio-frequency power amplifiers are used, for example, as transmit amplifiers in mobile radios.