摘要:
In a device for coupling optically a light source with an optical transmission path, the present invention interposes an optical transmission path structure at the center of the distance between them in order to improve the optical coupling efficiency. The optical transmission path structure consists of a plurality of light transmitting elements arranged so that the light from the light source is received by the structure as incident light and is sent out therefrom as outgoing light at an outgoing angle which is equal to the angle of incidence. The light transmitting elements are arranged in parallel with the optical path of the light emitted from the light source and according to this arrangement, the system of the present device becomes equivalent to a system in which the positions of the light source are located at points of .+-.l.sub.1 from the light outgoing surface of the optical transmission path structure. When used with an optical fiber, the optical transmission path structure is disposed such that the distance from the light source to one end face of the optical transmission path structure is the same as the distance from the end face of the means for transmitting to the other end face of the optical transmission path structure.
摘要:
An opto-electric transformation connector is provided, which can be used, as if it were an electric connector, without consideration of optical transmission of devices connected therewith, in a connecting system for connecting different devices by means of optical fibers. The connector includes an electronic circuit board, on which not only a light emitting element for transmitting optical signals and a light receiving element for receiving optical signals are disposed, but also a driving circuit for driving the light emitting element and an amplifier circuit for amplifying the light signals received by the light receiving element are mounted.
摘要:
Novel highly pure and stable crystals of .beta.-nicotinamide-adenine-dinucleotide tetrahydrate (NAD) which is triclinic system and has a space group of P1 or P1 and lattice constants: a=8.861 .ANG., b=11.181 .ANG., c=8.630 .ANG., .alpha.=90.82.degree., .beta.=103.40.degree. and .gamma.=109.71.degree.. The crystalline NAD is prepared by cooling a 20 to 60 w/v % aqueous solution of amorphous NAD, which has preferably been treated with a porous weakly basic anion exchange resin to remove impurities, at a temperature of 0.degree. to 20.degree. C. When the crystalline NAD is added to the aqueous solution as seeds, the desired high pure crystalline NAD is prepared without conducting the treatment of amorphous NAD with the porous weakly basic anion exchange resin. A high pure amorphous NAD is obtained from the crystalline NAD by dissolving the crystalline NAD in water and subjecting the aqueous solution to freeze drying or precipitation with a solvent.
摘要:
The invention provides a nanocomposite magnet, which has achieved high coercive force and high residual magnetization. The magnet is a non-ferromagnetic phase that is intercalated between a hard magnetic phase with a rare-earth magnet composition and a soft magnetic phase, wherein the non-ferromagnetic phase reacts with neither the hard nor soft magnetic phase. A hard magnetic phase contains Nd2Fe14B, a soft magnetic phase contains Fe or Fe2Co, and a non-ferromagnetic phase contains Ta. The thickness of the non-ferromagnetic phase containing Ta is 5 nm or less, and the thickness of the soft magnetic phase containing Fe or Fe2Co is 20 nm or less. Nd, or Pr, or an alloy of Nd and any one of Cu, Ag, Al, Ga, and Pr, or an alloy of Pr and any one of Cu, Ag, Al, and Ga is diffused into a grain boundary phase of the hard magnetic phase of Nd2Fe14B.
摘要:
The invention provides a nanocomposite magnet, which has achieved high coercive force and high residual magnetization. The magnet is a non-ferromagnetic phase that is intercalated between a hard magnetic phase with a rare-earth magnet composition and a soft magnetic phase, wherein the non-ferromagnetic phase reacts with neither the hard nor soft magnetic phase. A hard magnetic phase contains Nd2Fe14B, a soft magnetic phase contains Fe or Fe2Co, and a non-ferromagnetic phase contains Ta. The thickness of the non-ferromagnetic phase containing Ta is 5 nm or less, and the thickness of the soft magnetic phase containing Fe or Fe2Co is 20 nm or less. Nd, or Pr, or an alloy of Nd and any one of Cu, Ag, Al, Ga, and Pr, or an alloy of Pr and any one of Cu, Ag, Al, and Ga is diffused into a grain boundary phase of the hard magnetic phase of Nd2Fe14B.
摘要:
Provided are a sintered body for forming a rare-earth magnet with a high degree of orientation and high remanent magnetization, and a method for producing magnetic powder for forming the sintered body. A sintered body S that is a precursor of a rare-earth magnet, the sintered body S including crystal grains g2 of an Nd—Fe—B-based main phase with a nanocrystalline structure, and a grain boundary phase around the main phase, and the rare-earth magnet being adapted to be formed by applying hot deformation processing to the sintered body S for imparting anisotropy thereto and further diffusing an alloy for improving coercivity therein. Each crystal grain g2 that forms the sintered body S has a planar shape that is, when viewed from a direction perpendicular to an easy direction of magnetization (i.e., a c-axis direction), a rectangle having sides in the c-axis direction and sides in a direction (i.e., an a-axis direction) that is perpendicular to the c-axis direction, or a shape that is close to the rectangle.
摘要:
A molten alloy that has a nanocomposite magnet composition is quenched and solidified to fabricate a foil that has a polycrystalline phase composed of a hard magnetic phase with an average crystal grain diameter of 10 to 200 nm and a soft magnetic phase with an average crystal grain diameter of 1 to 100 nm. The foil that includes a low melting point phase that is formed on a surface of the foil and that has a melting point that is lower than that of the polycrystalline phase is sintered.
摘要:
An optical switch having a small number of optical connections includes a substrate in which are provided a first light path for conducting optical signals and a second light path consisting of a photosensitive element and light emitting element in pairs. An optical fiber cable is interrupted by the substrate, and optical signals in the fiber cable are transmitted through the first light path or intervened by an electrical system through the second light path in response to the switching movement of the substrate.
摘要:
A method of static reactive power compensation is disclosed wherein the system voltage is compensated by supplying advanced-phase or retarded phase reactive power in dependence upon the difference between the system voltage and a reference voltage. The difference is formed by a comparator which receives a variable reference voltage from a filter containing a time lag circuit and which receives the system voltage as an input. For transients, the output of the filter does not change and thus reactive power is applied. For smooth variations, the output of the filter follows that of the system voltage so that the output of the power compensation circuit is maintained at zero.