Abstract:
A process of forming an integrated circuit forms a high precision capacitor bottom plate with a metallic surface and performs a plasma treatment of the metallic surface. A high precision capacitor dielectric is formed by depositing a first layer of the capacitor dielectric on the high precision capacitor bottom plate wherein the first layer is silicon nitride, depositing a second layer of the capacitor dielectric on the first layer wherein the second portion is silicon dioxide, and depositing a third layer of the capacitor dielectric on the second portion wherein the third layer is silicon nitride. Plasma treatments may also be performed on the layers of capacitor dielectric pre- and/or post-deposition. A metallic high precision capacitor top plate is formed on the high precision capacitor dielectric.
Abstract:
An analog floating-gate electrode in an integrated circuit, and method of fabricating the same, in which trapped charge can be stored for long durations. The analog floating-gate electrode is formed in a polycrystalline silicon gate level, and includes portions serving as a transistor gate electrode, a plate of a metal-to-poly storage capacitor, and a plate of poly-to-active tunneling capacitors. A silicide-block film comprised of a layer of silicon dioxide underlying a top layer of silicon nitride blocks the formation of silicide cladding on the electrode, while other polysilicon structures in the integrated circuit, such as polysilicon-to-metal capacitors, are silicide-clad. Following silicidation, a capacitor dielectric is deposited over the remaining polysilicon structures, followed by formation of an upper metal plate.