Abstract:
A circuit includes a differential input stage amplifier that receives a differential input voltage and generates an output voltage based on a difference in the differential input voltage. A feedback loop provides feedback from an output of the differential input stage amplifier to input tail current of the differential input stage amplifier. The feedback loop enables class AB operation of the differential input stage amplifier. At least one gain reducer is operatively coupled to the feedback loop to reduce the gain of the feedback loop. The gain reducer has a resistance value that varies inversely proportional to loop current in the feedback loop to reduce the gain of the feedback loop as loop current increases.
Abstract:
Described examples include multistage amplifier circuits having first and second forward circuits, a comparator or sensor circuit coupled to sense a signal in the second forward circuit to identify nonlinear operation or slewing conditions in the multistage amplifier circuit, and one or more sample hold circuits operative according to a sensor circuit output signal to selectively maintain the amplitude of an amplifier input signal in the second forward circuit and/or in a feedback circuit in response to the sensor circuit output signal indicating nonlinear operation or slewing conditions in the multistage amplifier circuit. Certain examples further include a clamping circuit operative to selectively maintain a voltage at a terminal of a Miller compensation capacitance responsive to the comparator output signal indicating nonlinear operation or slewing conditions.
Abstract:
A system (1-2) for efficiently transferring harvested vibration energy to a battery (6) includes a piezo harvester (2) generating an AC output voltage (VP(t)) and current (IPZ(t)) and an active rectifier (3) to produce a harvested DC voltage (Vhrv) and current (Ihrv) which charge a capacitance (C0). An enable circuit (17) causes a DC-DC converter (4) to be enabled, thereby discharging the capacitance into the converter, when a comparator (A0,A1) of the rectifier which controls switches (S1-S4) thereof detects a direction reversal of the AC output current (IPZ(t)). Another comparator (13) causes the enable circuit (17) to disable the converter (4) when the DC voltage exceeds a threshold (VREF), thereby causing the capacitance be recharged.
Abstract:
An operational amplifier (10) capable of driving a capacitive load (CLOAD) and/or a resistive load (RLOAD) includes a first gain stage (2) having an output coupled to a high impedance node (3) and a second gain stage (5) having an input coupled to the first high impedance node. A gain reduction resistor (RD) and an AC coupling capacitor (CD) are coupled in series between the high impedance node and a reference voltage. A Miller feedback capacitor (CM) is coupled between an output conductor (7) of the second gain stage and the high impedance node. The output of the second gain stage may be coupled to the high impedance node by a cascode transistor (MCASCODE).
Abstract:
An operational amplifier (10) capable of driving a capacitive load (CLOAD) and/or a resistive load (RLOAD) includes a first gain stage (2) having an output coupled to a high impedance node (3) and a second gain stage (5) having an input coupled to the first high impedance node. A gain reduction resistor (RD) and an AC coupling capacitor (CD) are coupled in series between the high impedance node and a reference voltage. A Miller feedback capacitor (CM) is coupled between an output conductor (7) of the second gain stage and the high impedance node. The output of the second gain stage may be coupled to the high impedance node by a cascode transistor (MCASCODE).
Abstract:
A system (1-2) for efficiently transferring harvested vibration energy to a battery (6) includes a piezo harvester (2) generating an AC output voltage (VP(t)) and current (IPZ(t)) and an active rectifier (3) to produce a harvested DC voltage (Vhrv) and current (Ihrv) which charge a capacitance (C0). An enable circuit (17) causes a DC-DC converter (4) to be enabled, thereby discharging the capacitance into the converter, when a comparator (A0,A1) of the rectifier which controls switches (S1-S4) thereof detects a direction reversal of the AC output current (IPZ(t)). Another comparator (13) causes the enable circuit (17) to disable the converter (4) when the DC voltage exceeds a threshold (VREF), thereby causing the capacitance be recharged.
Abstract:
A circuit includes a differential input stage amplifier that receives a differential input voltage and generates an output voltage based on a difference in the differential input voltage. A feedback loop provides feedback from an output of the differential input stage amplifier to input tail current of the differential input stage amplifier. The feedback loop enables class AB operation of the differential input stage amplifier. At least one gain reducer is operatively coupled to the feedback loop to reduce the gain of the feedback loop. The gain reducer has a resistance value that varies inversely proportional to loop current in the feedback loop to reduce the gain of the feedback loop as loop current increases.
Abstract:
Described examples include multistage amplifier circuits having first and second forward circuits, a comparator or sensor circuit coupled to sense a signal in the second forward circuit to identify nonlinear operation or slewing conditions in the multistage amplifier circuit, and one or more sample hold circuits operative according to a sensor circuit output signal to selectively maintain the amplitude of an amplifier input signal in the second forward circuit and/or in a feedback circuit in response to the sensor circuit output signal indicating nonlinear operation or slewing conditions in the multistage amplifier circuit. Certain examples further include a clamping circuit operative to selectively maintain a voltage at a terminal of a Miller compensation capacitance responsive to the comparator output signal indicating nonlinear operation or slewing conditions.