Abstract:
A method of producing a nonaqueous secondary battery includes: preparing an electrode body (S10); constructing a battery assembly with the electrode body and a nonaqueous electrolyte (S20); initially charging the battery assembly (S30); aging the battery assembly at 40° C. or higher (S40); adjusting an SOC of the battery assembly (S60), wherein, the adjusting the SOC is performed such that a residual capacity percentage of the battery assembly is 11.5% or more and 14% or less; self-discharging the battery assembly and measuring a voltage drop amount (S70); and determining a quality of the battery assembly based on the voltage drop amount (S80).
Abstract:
A manufacturing method according to the present invention is a method for manufacturing a nonaqueous electrolyte secondary battery including graphite as a negative-electrode active material. The manufacturing method includes: a step of assembling the battery including a positive electrode and a negative electrode; and a step of performing an initial charging process of performing first charging on the battery. In the initial charging process, charging is performed at a relatively large first current value when a gas generation amount caused in the battery during the charging does not depend on a charging current value, and the charging is performed at a second current value smaller than the first current value when the gas generation amount depends on the charging current value.
Abstract:
The main object of the present invention is to provide a sulfide solid electrolyte material with less hydrogen sulfide generation amount. The present invention solves the above-mentioned problem by providing a sulfide solid electrolyte material using a raw material composition containing Li2S and sulfide of an element of the group 14 or the group 15 in the periodic table, containing substantially no cross-linking sulfur and Li2S.
Abstract translation:本发明的主要目的是提供硫化氢生成量少的硫化物固体电解质材料。 本发明通过提供硫化物固体电解质材料来解决上述问题,所述硫化物固体电解质材料使用含有Li 2 S的原料组合物和周期表中第14族或第15族元素的硫化物,其基本上不含交联硫和Li 2 S 。