Abstract:
A lubricant supply system is for a compressor that compresses a first working fluid in a heat transfer circuit. The lubricant supply system includes a lubricant tank, a lubricant pathway for supplying lubricant from the lubricant tank to one or more bearings of the compressor, and a lubricant refrigeration system with a lubricant heater and a lubricant cooler. The lubricant heater configured to heat the lubricant discharged from the one or more bearings and the lubricant cooler configured to cool the lubricant flowing through the lubricant pathway. A method of lubricating a compressor includes heating the lubricant, directing the lubricant from a lubricant tank through a lubricant pathway to one or more bearings of the compressor, and cooling the lubricant passing through the lubricant pathway.
Abstract:
Systems and methods to clamp an impeller on a shaft in a centrifugal compressor. The embodiments as disclosed herein may include clamping individual impeller independently to the shaft, which may reduce the tolerance stack-up effect of a plurality of impellers. The impeller can be clamped to the shaft by positioning, for example, a relatively stiff support (e.g. a shaft locknut) on a front side of the impeller. The impeller can also be clamped to the shaft by a relatively flexible support to compensate for e.g. thermal expansion/contraction of the impeller. The embodiments as disclosed herein are particularly suitable for a multi-stage impeller.
Abstract:
Systems and methods to clamp an impeller on a shaft in a centrifugal compressor. The embodiments as disclosed herein may include clamping individual impeller independently to the shaft, which may reduce the tolerance stack-up effect of a plurality of impellers. The impeller can be clamped to the shaft by positioning, for example, a relatively stiff support (e.g. a shaft locknut) on a front side of the impeller. The impeller can also be clamped to the shaft by a relatively flexible support to compensate for e.g. thermal expansion/contraction of the impeller. The embodiments as disclosed herein are particularly suitable for a multi-stage impeller.
Abstract:
A refrigeration chiller employs a centrifugal compressor the impellers of which are mounted on a shaft which is itself mounted for rotation using rolling element bearings lubricated only by the refrigerant which constitutes the working fluid of the chiller system. Apparatus is taught for providing liquid refrigerant to (1.) the bearings immediately upon chiller start-up, during chiller operation and during a coastdown period subsequent to shutdown of the chiller and (2.) the drive motor of the chiller's compressor for motor cooling purposes. By use of a variable speed-driven motor to drive the compressor, optimized part load chiller performance is achieved in a chiller which does not require or employ an oil-based lubrication system.
Abstract:
A compressor including a housing, a shaft configured to be rotated relative to the housing to compress a refrigerant, a motor configured to drive the shaft, a lubrication system configured to supply lubricant to the compressor, and a bearing configured to support the shaft. The shaft includes a wear-resistant sleeve-like treatment on at least a portion of an outer surface of the shaft adjacent the bearing. The lubricant is a lubricant blend composition that includes two or more lubricants, the two or more lubricants including a first lubricant and a second lubricant. The first lubricant is present at a higher volume percentage than the second lubricant, and the first lubricant includes a higher viscosity than the second lubricant.
Abstract:
Apparatuses, systems, and methods to regulate the temperature of lubricant are provided. The regulation of the lubricant temperature can include increasing or decreasing the temperature of the lubricant. More specifically, apparatuses and methods are disclosed to reduce the temperature of the lubricant before it is directed to a mechanical component for lubrication purposes.
Abstract:
Systems and methods to help provide lubricant to a bearing in a compressor are disclosed. The embodiments disclosed herein generally are directed to systems and methods to provide a lubricant flow to the bearing, where the lubricant flow relies on the rotation of a shaft of the compressor, so that the lubricant flow can be independent of a power supply.
Abstract:
A pressure nitrided stainless steel hybrid ball bearing having an inner ring, an outer ring, and rolling elements disposed therebetween. The pressure nitrided stainless steel hybrid bearing has one or more component(s) made from a pressure nitrided stainless steel material. The pressure nitrided stainless steel hybrid bearing used with a refrigerant lubrication for chiller applications leads to a very long useful life time.
Abstract:
A vibration isolation apparatus for an air conditioning system may include a flow passage, at least a portion of which has a convoluted structure. The flow passage may also be coupled to two stabilizing members. The vibration isolation apparatus may include a structural supporting member to retain the two stabilizing members. The rod may be isolated from the stabilizing members by vibration isolation members. The vibration isolation apparatus may be positioned in a refrigeration line between an outlet of a compressor and a refrigerant pipe. The stabilizing members, the convoluted flow passage and the vibration isolation members may attenuate the vibration generated by the compressor so as to reduce the vibration transmitted to the refrigerant pipe. The structural supporting member may enhance the structural strength of the vibration isolation apparatus to withstand the pressure of the compressed refrigerant.
Abstract:
Systems and methods to help provide lubricant to a bearing in a compressor are disclosed. The embodiments disclosed herein generally are directed to systems and methods to provide a lubricant flow to the bearing, where the lubricant flow relies on the rotation of a shaft of the compressor, so that the lubricant flow can be independent of a power supply.