Abstract:
Structures and formation methods of a semiconductor device structure are provided. The method includes forming a first fin structure and a second fin structure over a semiconductor substrate, and forming a mask layer covering the first fin structure and the second fin structure. The method also includes performing a first etching operation using the second fin structure as an etch stop layer to partially remove the mask layer such that the etch stop layer protrudes from the mask layer after the first etching operation. The method further includes partially removing the second fin structure using a second etching operation after the first etching operation.
Abstract:
A method for forming a semiconductor device structure is provided. The method includes forming a metal gate electrode structure and an insulating layer over the semiconductor substrate. The insulating layer surrounds the metal gate electrode structure. The method includes nitrifying a first top portion of the metal gate electrode structure to form a metal nitride layer over the metal gate electrode structure.
Abstract:
The semiconductor device includes a substrate, an epi-layer, a first etch stop layer, an interlayer dielectric (ILD) layer, a second etch stop layer, a protective layer, a liner, a silicide cap and a contact plug. The substrate has a first portion and a second portion. The epi-layer is disposed in the first portion. The first etch stop layer is disposed on the second portion. The ILD layer is disposed on the first etch stop layer. The second etch stop layer is disposed on the ILD layer, in which the first etch stop layer, the ILD layer and the second etch stop layer form a sidewall surrounding the first portion. The protective layer is disposed on the sidewall. The liner is disposed on the protective layer. The silicide cap is disposed on the epi-layer. The contact plug is disposed on the silicide cap and surrounded by the liner.
Abstract:
The semiconductor device includes a substrate, an epi-layer, a first etch stop layer, an interlayer dielectric (ILD) layer, a second etch stop layer, a protective layer, a liner, a silicide cap and a contact plug. The substrate has a first portion and a second portion. The epi-layer is disposed in the first portion. The first etch stop layer is disposed on the second portion. The ILD layer is disposed on the first etch stop layer. The second etch stop layer is disposed on the ILD layer, in which the first etch stop layer, the ILD layer and the second etch stop layer form a sidewall surrounding the first portion. The protective layer is disposed on the sidewall. The liner is disposed on the protective layer. The silicide cap is disposed on the epi-layer. The contact plug is disposed on the silicide cap and surrounded by the liner.
Abstract:
Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a gate stack over the semiconductor substrate. The gate stack includes a gate dielectric layer and a work function layer. The gate dielectric layer is between the semiconductor substrate and the work function layer. The semiconductor device structure also includes a halogen source layer. The gate dielectric layer is between the semiconductor substrate and the halogen source layer.
Abstract:
Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a gate stack over the semiconductor substrate. The gate stack includes a gate dielectric layer and a work function layer. The gate dielectric layer is between the semiconductor substrate and the work function layer. The semiconductor device structure also includes a halogen source layer. The gate dielectric layer is between the semiconductor substrate and the halogen source layer.
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate. The semiconductor device structure includes a metal gate electrode structure over the semiconductor substrate. The semiconductor device structure includes an insulating layer over the semiconductor substrate and surrounding the metal gate electrode structure. The semiconductor device structure includes a first metal nitride layer over a first top surface of the metal gate electrode structure and in direct contact with the metal gate electrode structure. The first metal nitride layer includes a nitride material of the metal gate electrode structure.
Abstract:
Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a first fin structure over a semiconductor substrate. The semiconductor device structure also includes a second fin structure over the semiconductor substrate. The second fin structure has a lower height than that of the first fin structure. The second fin structure includes a first sidewall and a second sidewall, and the first sidewall and the second sidewall surround a recess over the second fin structure.
Abstract:
Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a gate stack over a semiconductor substrate. The semiconductor device structure also includes a source/drain structure over the semiconductor substrate, and the source/drain structure includes a dopant. The semiconductor device structure further includes a channel region under the gate stack. In addition, the semiconductor device structure includes a semiconductor layer surrounding the source/drain structure. The semiconductor layer is configured to prevent the dopant from entering the channel region.
Abstract:
A semiconductor structure includes a semiconductor substrate, a first active area, a second active area, a first trench, at least one raised portion, and a first dielectric. The first active area is in the semiconductor substrate. The second active area is in the semiconductor substrate. The first trench is in the semiconductor substrate and separates the first active area and the second active area from each other. The raised portion is raised from the semiconductor substrate and is disposed in the first trench. The first dielectric is in the first trench and covers the raised portion.