摘要:
A coating film forming apparatus for immersion light exposure includes one or more coating units configured to apply a resist film or a resist film and an additional film onto a substrate, one or more thermally processing units configured to perform a thermal process, a defect eliciting unit configured to perform a process for eliciting a latent defect of a coating film at an edge portion of the substrate, a checking unit configured to check a state of the coating film after the process by the defect eliciting unit, a control section configured to use a check result obtained by the checking unit to make a judgment of the state of the coating film and permit transfer of the substrate to the light exposure apparatus, and a cleaning unit configured to perform cleaning on the substrate before the process by the defect eliciting unit.
摘要:
A coating film forming apparatus for immersion light exposure, for forming a coating film including a resist film or a resist film and an additional film on a substrate to be fed to an immersion light exposure apparatus configured to perform a light exposure process through a liquid, includes: one or more coating units configured to apply the resist film or the resist film and the additional film onto the substrate; one or more thermally processing units configured to perform a thermal process necessary for forming the coating film on the substrate; a checking unit configured to check a state of the coating film at an edge portion of the substrate before the immersion light exposure; and a control section configured to use a check result obtained by the checking unit to make a judgment of whether or not the state of the coating film at the edge portion of the substrate is within an acceptable range, and to permit transfer of the substrate to the light exposure apparatus when the state of the coating film is within the acceptable range.
摘要:
A solution-receiving plate having solution-passing holes for passing a developer solution therethrough toward the back side of the plate is provided. Respective surfaces of the solution-receiving plate and a substrate are at the same height, and the solution-receiving plate is placed on the front-end side of the substrate and separated slightly from the front end of the substrate. A supply nozzle is moved to apply a developer solution. Accordingly, when the developer solution extended continuously between the perimeter of the substrate and the supply nozzle is severed, the severed developer solution is prevented from returning to the developer solution already spread over the substrate and thus flow and waves are prevented from occurring in the developer solution spread on the surface of the substrate. A resist pattern with a highly uniform line width is thus produced.
摘要:
A developer nozzle is moved from a periphery of a wafer toward the central portion while an exposed substrate held at a spin chuck is being rotated about a vertical axis and while a developing solution is being discharged from the developer nozzle, and this way the developing solution is supplied to the surface of the wafer, the developer nozzle having a slit-like ejection port whose longitudinal direction is oriented to the direction perpendicular to the radial direction of the wafer. The movement speed of the nozzle is higher than a case where a nozzle with a small-diameter circular nozzle is used, and this enables a development time to be reduced. Further, the thickness of a developing solution on a substrate can be reduced, so that the developing solution can be saved.
摘要:
A resist film formed on a substrate is coated with a water-repellent protective film and the substrate is subjected to a developing process after the substrate has been processed by an immersion exposure process. The protective film is removed from the substrate after the resist film has been processed by the immersion exposure process, the substrate is processed by a heating process, and then the substrate is subjected to a developing process. The surface of the substrate is cleaned with a cleaning liquid before the protective film is removed and after the substrate has been processed by the immersion exposure process or the surface of the substrate is cleaned with a cleaning liquid after removing the protective film and before the substrate is subjected to the heating process.
摘要:
Accurate coating and developing having high intrasurface uniformity is achieved by suppressing the influence of components of a resist that may be eluted while a substrate coated with the resist is processed by immersion exposure. A coating unit coats a surface of a substrate with a resist. then, a first cleaning means including a cleaning nozzle cleans the substrate and then the substrate is subjected to an exposure process. Since only a small amount of components of the resist dissolves in a transparent liquid layer formed on the substrate for exposure, an exposure process can form lines in accurate line-widths. Consequently, a resist pattern of lines having accurate line-widths having high intrasurface uniformity can be formed on the substrate by developing the exposed resist.
摘要:
In a developing processing of a wafer having a resist film low in the dissolving rate in a developing solution formed thereon and subjected to an exposure treatment, a developing solution of a low concentration is supplied first onto a wafer and the wafer is left to stand for a prescribed time to permit a developing reaction to proceed, followed by further supplying a developing solution having a concentration higher than that of the developing solution supplied first onto the wafer, leaving the substrate to stand and subsequently rinsing the wafer, thereby improving the uniformity of the line width in the central portion and the peripheral portion of the wafer.
摘要:
A developer nozzle is moved from a periphery of a wafer toward the central portion while an exposed substrate held at a spin chuck is being rotated about a vertical axis and while a developing solution is being discharged from the developer nozzle, and this way the developing solution is supplied to the surface of the wafer, the developer nozzle having a slit-like ejection port whose longitudinal direction is oriented to the direction perpendicular to the radial direction of the wafer. The movement speed of the nozzle is higher than a case where a nozzle with a small-diameter circular nozzle is used, and this enables a development time to be reduced. Further, the thickness of a developing solution on a substrate can be reduced, so that the developing solution can be saved.
摘要:
A substrate cleaning device and a substrate cleaning method reduces liquid drops remaining on a substrate to prevent the irregular heating of the substrate by a heating process due to liquid drops or water marks remaining on the substrate. A cleaning liquid is poured through a cleaning liquid pouring nozzle onto the surface of a substrate such that a region onto which the cleaning liquid is poured moves from a central part toward the circumference of the substrate. A gas is jetted radially outward at a region on the surface of the substrate behind a region onto which the cleaning liquid is poured with respect to the rotating direction of the substrate. The gas forces a liquid film of the cleaning liquid flowing on the surface of the substrate to flow in a circumferential direction and a radially outward direction. The cleaning liquid poured out onto the surface of the substrate through the cleaning liquid pouring nozzle is restrained from flowing by a liquid damming member held at a height equal to or lower than that of the nozzle exit of the cleaning liquid pouring nozzle to collect a mass of the cleaning liquid. A high centrifugal force acts on the mass of the cleaning liquid to force the mass of the cleaning liquid to flow outward even if the substrate is rotated at a low rotating speed.
摘要:
In a developing processing of a wafer having a resist film low in the dissolving rate in a developing solution formed thereon and subjected to an exposure treatment, a developing solution of a low concentration is supplied first onto a wafer and the wafer is left to stand for a prescribed time to permit a developing reaction to proceed, followed by further supplying a developing solution having a concentration higher than that of the developing solution supplied first onto the wafer, leaving the substrate to stand and subsequently rinsing the wafer, thereby improving the uniformity of the line width in the central portion and the peripheral portion of the wafer.