摘要:
The present invention provides an optical synthetic quartz glass material which substantially does not cause changes in transmitted wave surface (TWS) by solarization, compaction (TWS delayed), rarefaction (TWS progressed) and photorefractive effect when ArF excimer laser irradiation is applied at a low energy density, e.g. at energy density per pulse of 0.3 mJ/cm2 or less. The present invention further provides a method for manufacturing the same. In order to solve the above-mentioned problems, the optical synthetic quartz glass material of the present invention is characterized in that, in a synthetic quartz glass prepared by a flame hydrolysis method using a silicon compound as a material, the followings are satisfied that the amount of SiOH is within a range of more than 10 ppm by weight to 400 ppm by weight, content of fluorine is 30 to 1000 ppm by weight, content of hydrogen is 0.1×1017 to 10×1017 molecules/cm3 and, when the amounts of SiOH and fluorine are A and B, respectively, total amount of A and B is 100 ppm by weight or more and B/A is 0.25 to 25.
摘要翻译:本发明提供了一种光学合成石英玻璃材料,其在低温下施加ArF准分子激光照射时,通过太阳化,压实(TWS延迟),稀释(TWS进行)和光折射效应基本上不会引起透射波面(TWS)的变化 能量密度,例如 每个脉冲的能量密度为0.3mJ / cm 2以下。 本发明还提供一种制造该方法的方法。 为了解决上述问题,本发明的光学合成石英玻璃材料的特征在于,在使用硅化合物作为材料的火焰水解法制备的合成石英玻璃中,满足以下条件: SiOH的量在大于10重量ppm至400重量ppm的范围内,氟含量为30至1000重量ppm,氢含量为0.1×10 17至10 10 17分子/ cm 3,当SiOH和氟的量分别为A和B时,A和B的总量为100重量ppm以上,B / A为 0.25至25。
摘要:
In the light of the disadvantages of the prior art technology, an object of the present invention is to provide a method for producing a synthetic quartz glass member for excimer lasers, which comprises, while suppressing the generation of reductive defects which impairs the resistance against laser radiations, incorporating a sufficient amount of hydrogen molecules capable of achieving a high resistance against laser radiation into the quartz glass, yet uniformly incorporating the hydrogen molecules to realize a flat distribution in refractive indices attributed to the distribution in the density of hydrogen molecules. It is also an object of the present invention to provide a synthetic quartz glass member for excimer lasers obtained by the production method above, which yields high resistance against laser radiations and homogeneity. The above problems have been overcome by a method for producing a synthetic quartz glass member for excimer lasers, which, in a method for producing a synthetic quartz glass member for excimer laser optics comprising a step of incorporating hydrogen molecules into a synthetic quartz glass body by heat treating the synthetic quartz glass body at a temperature of 600° C. or lower under an atmosphere in a pressure range of 1 atm or higher but lower than 150 atm and containing hydrogen, said method comprises varying the pressure of the gas containing hydrogen either continuously or stepwise in at least a part of the heat treatment.
摘要:
The present invention relates to a synthetic quartz glass, which is a material for producing an optical member having an excellent excimer laser resistance, and a production method thereof with a good productivity. That is, the synthetic quartz glass produced by vitrifying glass fine particles obtained by flame hydrolysis of an organodisilazane compound directly on a substrate having a birefringence index of 5 nm/cm or less, a refractive index difference (&Dgr;n) of 2×10−6/cm or less, and an ArF saturated absorbance of 0.05/cm or less at a pulse energy density of 100 mJ/cm2/pulse. The production method thereof comprises the steps of introducing an organodisilazane compound represented by a general formula 1: (R1), SiNHSi(R2)3 (1) wherein R1 and R2 represent the same or a different alkyl group having 1 to 3 carbon atoms, into a flame comprising a combustion gas and a combustion-supporting gas to generate silica fine particles, and accumulating the silica fine particles on a rotating heat resistant substrate to be a molten glass.
摘要翻译:本发明涉及一种合成石英玻璃,其是用于制造具有优异的受激准分子激光电阻的光学部件的材料及其生产率高的生产方法。 也就是说,通过玻璃化玻璃微粒制造的合成石英玻璃,其通过有机二硅氮烷化合物直接在双折射率为5nm / cm以下的折射率(DELTAn)为2×10 -6 / cm 或更小,在脉冲能量密度为100mJ / cm 2 /脉冲下的ArF饱和吸光度为0.05 / cm以下。 其制造方法包括将由通式1表示的有机二硅氮烷化合物引入包含燃烧气体和燃烧支持的火焰的步骤中,其中R1和R2表示相同或不同的具有1至3个碳原子的烷基 气体产生二氧化硅微粒,并将二氧化硅微粒聚集在旋转的耐热基材上成为熔融玻璃。
摘要:
It is an object of the present invention to provide synthetic quartz glass optical materials suitable for use in YAG of higher order harmonics. The damage threshold value in J/cm2 (energy density at which cracks occur generated by irradiation) is to be considered when synthetic quartz glass material is irradiated with YAG laser of third or higher order harmonics with single pulses or continuously. Regarding a synthetic quartz glass optical material in use for the optical parts constituting the prism and lens used in a laser beam machine, this invention provides a synthetic quartz glass material suitably used for the YAG laser with the third or higher order of harmonic, choosing the following conditions: OH group concentration is in the range of ≧1 to ≦300 ppm; contained hydrogen molecule concentration is in the range of ≧2×1018 to ≧2×1019 molecules/cm3; transmittance of ultraviolet rays at 245 nm of wavelength is 99.9% or more; and the fictive temperature is in the range of ≧880 to ≦990° C.
摘要:
An optical system for integrated circuit fabrication comprises optical members made of synthetic quartz glass and fluorite, wherein: an optical member disposed in a position through which laser light is transmitted at a high light energy density, is made of single crystal fluorite; and an optical member in a position through which laser light is transmitted at a low light energy density, is made of synthetic quartz glass containing approximately such a hydrogen molecule concentration as can be doped under atmospheric pressure.
摘要:
Disclosed is a printed wiring board which attains aims of printed wiring boards required for realizing high-speed, high-frequency semiconductor devices, namely a printed wiring board having low dielectric constant, low dielectric loss tangent and low linear expansion coefficient. Also disclosed is a composite woven fabric suitably used as a base material for such a printed wiring board. Specifically disclosed is a composite woven fabric containing quartz glass fibers and polyolefin fibers, in which the ratio of the quartz glass fibers to the composite woven fabric is set at 10 vol % or more and 90 vol % or less. It is preferred that the quartz glass fibers each have a filament diameter of 3 μm or more and 16 μm or less, and the composite woven fabric has a thickness of 200 μm or less.
摘要:
It is an object of the present invention to provide synthetic quartz glass optical materials suitable for use in YAG of higher order harmonics. The damage threshold value in J/cm2 (energy density at which cracks occur generated by irradiation) is to be considered when synthetic quartz glass material is irradiated with YAG laser of third or higher order harmonics with single pulses or continuously. Regarding a synthetic quartz glass optical material in use for the optical parts constituting the prism and lens used in a laser beam machine, this invention provides a synthetic quartz glass material suitably used for the YAG laser with the third or higher order of harmonic, choosing the following conditions: OH group concentration is in the range of ≧1 to ≦300 ppm; contained hydrogen molecule concentration is in the range of ≧2×1018 to ≦2×1019 molecules/cm3; transmittance of ultraviolet rays at 245 nm of wavelength is 99.9% or more; and the fictive temperature is in the range of ≧880 to ≦990° C.
摘要:
A simple method for producing a synthetic quartz glass having excellent homogeneity and high transmittance, which is useful as an optical material in producing steppers equipped with an ArF excimer laser as a radiation source. A method for producing a synthetic quartz glass for use in ArF excimer laser lithography, which comprises irradiating a highly homogeneous synthetic quartz glass containing less than 60 ppb of Na with ultraviolet radiation having a maximum wavelength of 260 nm for not less than the duration expressed by the equation: Y=(80X−1880)/Z wherein X represents an Na concentration (ppb), Y represents the duration of irradiation (hours), and Z represents the illuminance of an ultraviolet radiation on an irradiated surface (mW/cm2).
摘要翻译:用于制造具有优异的均匀性和高透射率的合成石英玻璃的简单方法,其可用作制备装备有ArF准分子激光器作为辐射源的步进机中的光学材料。 一种用于制造用于ArF准分子激光光刻的合成石英玻璃的方法,其包括:将含有小于60ppb的Na的高度均匀的合成石英玻璃与最大波长为260nm的紫外线辐射照射不少于由 方程式:其中X表示Na浓度(ppb),Y表示照射持续时间(小时),Z表示照射表面上的紫外线照射的照度(mW / cm 2)。
摘要:
An excellent quartz glass optical member having stable laser beam resistance, can be obtained by preparing quartz glass in a process having:a first step of subjecting a starting material obtained from silicon halide, alkoxysilane, alkylalkoxysilane, etc. to an oxidizing heat treatment in a temperature range between 600 and 1,500.degree. C., to decrease the hydrogen concentration to 5.times.10.sup.16 molecules/cm.sup.3 or less and at the same time eliminate reducing defects;a second step of subsequently holding the quartz in a hydrogen-containing atmosphere in a temperature range between 200 and 600.degree. C., to establish a hydrogen concentration in the glass of 1.times.10.sup.17 molecules/cm.sup.3 ; anda third step of carrying out a treatment of making the hydrogen concentration of the resultant quartz glass uniform in an atmosphere of air, inert gas, hydrogen, a mixture of hydrogen and inert gas, or a mixture of air and inert gas in a temperature range between 300 and 800.degree. C.
摘要翻译:具有稳定的激光束电阻的优良的石英玻璃光学部件可以通过以下工序制备石英玻璃得到:第一步是将由卤化硅,烷氧基硅烷,烷基烷氧基硅烷等获得的原料进行氧化热处理 温度范围为600〜1500℃,将氢浓度降低至5×1016分子/ cm3以下,同时消除了缺陷; 随后在200℃至600℃的温度范围内将石英保持在含氢气氛中,以在玻璃中形成1×10 17分子/ cm 3的氢浓度; 以及在空气,惰性气体,氢气,氢气和惰性气体的混合物或空气和惰性气体的混合物的温度下进行使所得石英玻璃的氢浓度均匀的处理的第三步骤 范围在300和800℃之间
摘要:
A method for producing an optical quartz glass for use in excimer lasers, comprising a step of forming a porous silica preform by depositing silica in a soot-like form formed by flame hydrolysis of a high-purity volatile silicon compound, followed by a step of vitrifying said porous silica preform into transparent glass in an atmosphere containing water vapor and hydrogen, and a vertical type heating furnace for carrying out the production method therein.