Abstract:
A process is disclosed of forming metal replacement gates for NMOS and PMOS transistors with oxygen in the PMOS metal gates and metal atom enrichment in the NMOS gates such that the PMOS gates have effective work functions above 4.85 eV and the NMOS gates have effective work functions below 4.25 eV. Metal work function layers in both the NMOS and PMOS gates are oxidized to increase their effective work functions to the desired PMOS range. An oxygen diffusion blocking layer is formed over the PMOS gate and an oxygen getter is formed over the NMOS gates. A getter anneal extracts the oxygen from the NMOS work function layers and adds metal atom enrichment to the NMOS work function layers, reducing their effective work functions to the desired NMOS range. Processes and materials for the metal work function layers, the oxidation process and oxygen gettering are disclosed.
Abstract:
A method of forming an integrated circuit (IC) having at least one MOS device includes forming a SiON gate dielectric layer on a silicon surface. A gate electrode layer is deposited on the SiON gate layer and then patterning forms a gate stack. Exposed gate dielectric sidewalls are revealed by the patterning. A supplemental silicon oxide layer is formed on the exposed SiON sidewalls followed by nitriding. After nitriding, a post nitridation annealing (PNA) forms an annealed N-enhanced SiON gate dielectric layer including N-enhanced SiON sidewalls, wherein along lines of constant thickness a N concentration at the N-enhanced SiON sidewalls is ≧ the N concentration in a bulk of the annealed N-enhanced SiON gate layer −2 atomic %. A source and drain region on opposing sides of the gate stack are formed to define a channel region under the gate stack.
Abstract:
A process is disclosed of forming metal replacement gates for PMOS transistors with oxygen in the metal gates such that the PMOS gates have effective work functions above 4.85. Metal work function layers in the PMOS gates are oxidized at low temperature to increase their effective work functions to the desired PMOS range. Hydrogen may also be incorporated at an interface between the metal gates and underlying gate dielectrics. Materials for the metal work function layers and processes for the low temperature oxidation are disclosed.
Abstract:
A process is disclosed of forming metal replacement gates for PMOS transistors with oxygen in the metal gates such that the PMOS gates have effective work functions above 4.85. Metal work function layers in the PMOS gates are oxidized at low temperature to increase their effective work functions to the desired PMOS range. Hydrogen may also be incorporated at an interface between the metal gates and underlying gate dielectrics. Materials for the metal work function layers and processes for the low temperature oxidation are disclosed.
Abstract:
An integrated circuit containing metal replacement gates may be formed by forming a nitrogen-rich titanium-based barrier between a high-k gate dielectric layer and a metal work function layer of a PMOS transistor. The nitrogen-rich titanium-based barrier is less than 1 nanometer thick and has an atomic ratio of titanium to nitrogen of less than 43:57. The nitrogen-rich titanium-based barrier may be formed by forming a titanium based layer over the gate dielectric layer and subsequently adding nitrogen to the titanium based layer. The metal work function layer is formed over the nitrogen-rich titanium-based barrier.
Abstract:
A process is disclosed of forming metal replacement gates for NMOS and PMOS transistors with oxygen in the PMOS metal gates and metal atom enrichment in the NMOS gates such that the PMOS gates have effective work functions above 4.85 eV and the NMOS gates have effective work functions below 4.25 eV. Metal work function layers in both the NMOS and PMOS gates are oxidized to increase their effective work functions to the desired PMOS range. An oxygen diffusion blocking layer is formed over the PMOS gate and an oxygen getter is formed over the NMOS gates. A getter anneal extracts the oxygen from the NMOS work function layers and adds metal atom enrichment to the NMOS work function layers, reducing their effective work functions to the desired NMOS range. Processes and materials for the metal work function layers, the oxidation process and oxygen gettering are disclosed.