Abstract:
Forming an integrated circuit, for example by first, concurrently forming a first front end of line (FEOL) layer having a first thickness and a surface contacting or facing a semiconductor substrate frontside and a second FEOL layer, having a second thickness and including a same material as the first FEOL layer and having a surface contacting or facing a semiconductor substrate backside, and second, processing the second FEOL layer to reduce the second thickness.
Abstract:
An integrated circuit is formed by removing a sacrificial gate dielectric layer and a sacrificial gate to form a gate cavity. A conformal dielectric first liner is formed in the gate cavity and a conformal second liner is formed on the first liner. A first etch removes the second liner from the bottom of the gate cavity, leaving material of the second liner on sidewalls of the gate cavity. A second etch removes the first liner from the bottom of the gate cavity exposed by the second liner, leaving material of the first liner on the bottom of the gate cavity under the second liner on the sidewalls of the gate cavity. A third etch removes the second liner from the gate cavity, leaving an L-shaped spacers of the first liner in the gate cavity. A permanent gate dielectric layer and replacement gate are formed in the gate cavity.
Abstract:
An integrated circuit with a thick TiN metal gate with a work function greater than 4.85 eV and with a thin TiN metal gate with a work function less than 4.25 eV. An integrated circuit with a replacement gate PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a replacement gate NMOS TiN metal gate transistor with a workfunction less than 4.25 eV. An integrated circuit with a gate first PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a gate first NMOS TiN metal gate transistor with a workfunction less than 4.25 eV.
Abstract:
A method of forming an integrated circuit (IC) having at least one MOS device includes forming a SiON gate dielectric layer on a silicon surface. A gate electrode layer is deposited on the SiON gate layer and then patterning forms a gate stack. Exposed gate dielectric sidewalls are revealed by the patterning. A supplemental silicon oxide layer is formed on the exposed SiON sidewalls followed by nitriding. After nitriding, a post nitridation annealing (PNA) forms an annealed N-enhanced SiON gate dielectric layer including N-enhanced SiON sidewalls, wherein along lines of constant thickness a N concentration at the N-enhanced SiON sidewalls is ≧ the N concentration in a bulk of the annealed N-enhanced SiON gate layer −2 atomic %. A source and drain region on opposing sides of the gate stack are formed to define a channel region under the gate stack.
Abstract:
A method of fabricating an integrated circuit includes depositing a first dielectric material onto a semiconductor surface of a substrate having a gate stack thereon including a gate electrode on a gate dielectric. The first dielectric material is etched to form sidewall spacers on sidewalls of the gate stack. A top surface of the first dielectric material is chemically converted to a second dielectric material by adding at least one element to provide surface converted sidewall spacers. The second dielectric material is chemically bonded across a transition region to the first dielectric material.
Abstract:
A method of manufacturing a semiconductor includes applying a planarization material to a substrate and forming an opening in the planarization material. The opening is filled with polysilicon. A plurality of etching modulation sequences are applied to the substrate, each of the etching modulation sequences including: applying a first etching process to the substrate, wherein the first etching process is more selective to polysilicon than the planarization material; and applying a second etching process to the substrate, wherein the second etching process is more selective to the planarization material than the polysilicon.
Abstract:
An integrated circuit is formed by removing a sacrificial gate dielectric layer and a sacrificial gate to form a gate cavity. A conformal dielectric first liner is formed in the gate cavity and a conformal second liner is formed on the first liner. A first etch removes the second liner from the bottom of the gate cavity, leaving material of the second liner on sidewalls of the gate cavity. A second etch removes the first liner from the bottom of the gate cavity exposed by the second liner, leaving material of the first liner on the bottom of the gate cavity under the second liner on the sidewalls of the gate cavity. A third etch removes the second liner from the gate cavity, leaving an L-shaped spacers of the first liner in the gate cavity. A permanent gate dielectric layer and replacement gate are formed in the gate cavity.
Abstract:
A method of forming an integrated circuit relative to a wafer comprising a semiconductor substrate. The method first forms a first dielectric layer having a first thickness and along the substrate, the first forming step comprising plasma etching the wafer in a first substrate area and a second substrate area and thereafter growing the first dielectric layer in the first substrate area and the second substrate area. After the first step, the method second forms a second dielectric layer having a second thickness and along the substrate in the second substrate area, the second thickness less than the first thickness, the second forming step comprising removal of the first dielectric layer in the second substrate area without plasma and until a surface of the substrate is exposed and growing the second dielectric layer in at least a portion of the surface.
Abstract:
A method of manufacturing a semiconductor includes applying a planarization material to a substrate and forming an opening in the planarization material. The opening is filled with polysilicon. A plurality of etching modulation sequences are applied to the substrate, each of the etching modulation sequences including: applying a first etching process to the substrate, wherein the first etching process is more selective to polysilicon than the planarization material; and applying a second etching process to the substrate, wherein the second etching process is more selective to the planarization material than the polysilicon.
Abstract:
A method of manufacturing a semiconductor includes applying a planarization material to a substrate and forming an opening in the planarization material. The opening is filled with polysilicon. A plurality of etching modulation sequences are applied to the substrate, each of the etching modulation sequences including: applying a first etching process to the substrate, wherein the first etching process is more selective to polysilicon than the planarization material; and applying a second etching process to the substrate, wherein the second etching process is more selective to the planarization material than the polysilicon.