Abstract:
A transistor circuit is provided including a driving transistor where conductance between the source and the drain is controlled in response to a supplied voltage, and a compensating transistor where the gate is connected to one of the source and the drain, the compensating transistor being connected so as to supply input signals to the gate of the driving transistor through the source and drain. In a transistor circuit where conductance control in a driving transistor is carried out in response to the voltage of input signals, it is possible to control the conductance by using input signals of a relatively low voltage and a variance in threshold characteristics of driving transistors is compensated. With this transistor circuit, a display panel that can display picture images with reduced uneven brightness is achieved.
Abstract:
A driving circuit of an electro-optical device such as a liquid crystal device is compatible with digital image signals and implements a DA converting function and a &ggr; correcting function by a relatively simple and small-scale circuit configuration. The driving circuit of the liquid crystal device is provided with a DAC 3 for issuing a voltage signal Vc corresponding to N bits of digital image data DA that indicate a gray scale value to a signal line of the liquid crystal device. Depending on whether the value of a most significant bit is “0” or “1,” the DAC 3 brings the output driving voltage characteristic close to the optical characteristics of the liquid crystal device according to the a pair of first or second reference voltages so as to make a &ggr; correction.
Abstract:
It is an object to provide a high-performance display element driving device or the like which can be easily reduced in power consumption and scale. A display element driving device (100) drives a liquid crystal serving as a capacitive display element. A D/A converter (110) includes first to Nth charge storage sections (112-1) to (112-N) for receiving first to Nth digital data corresponding an image signal and storing charges corresponding to the values of the first to Nth digital data, and first to Nth connection sections (114-1) to (114-N) for electrically connecting the first to Nth charge storing sections (112-1) to (112-N) and an electrode line (130) to each other and discharging the stored charges to the electrode line (130) at a given timing. In this manner, &ggr;-correction of a liquid crystal and D/A conversion can be simultaneously performed, and conversion from RGB to YUV and D/A conversion can be simultaneously performed.
Abstract:
The invention provides a display device in which parasitic capacitance associated with data lines and driving circuits is prevented using a bank layer whose primary purpose is to define areas on a substrate in which an organic semiconductor film is formed. When the organic semiconductor film for forming a luminescent element such as an electroluminescent element or an LED is formed is formed in pixel regions (7), the organic semiconductor film is formed in the areas surrounded by the bank layer (bank) formed of a black resist. The bank layer (bank) is also formed between an opposite electrode (op) and data lines (sig) for supplying an image signal to first TFTs (20) and holding capacitors (cap) in the pixel regions (7) thereby preventing parasitic capacitance associated with the data lines (sig).
Abstract:
An electroluminescent apparatus having a substrate and a transistor formed above the substrate and having a gate electrode and a semiconductor film. The electroluminescent apparatus having a first insulation film including a first contact hole and a junction electrode contacted to the semiconductor film through the first contact hole. The electroluminescent apparatus having a second insulation film formed above the junction electrode and the first insulation film and including a second contact hole and a pixel electrode formed on the second insulation film and contacted to the junction electrode through the second contact hole. The electroluminescent apparatus having an insulating layer formed above the second insulation film, an organic semiconductor film formed at an emitting region above the pixel electrode, and an opposite electrode formed above the organic semiconductor film and insulating layer. The insulating layer surrounding the emitting region and overlapping the second contact hole.
Abstract:
A display device having a scanning line, a data line, a power supply line, and a pixel. The pixel having a first transistor supplied with a selecting pulse of a scanning signal, a holding capacitor having a first electrode and a second electrode that holds an image signal from the data line and the first thin film transistor. The pixel also having a second transistor controlled by the image signal, a gate of the second transistor being electrically connected to the second electrode, and a luminescent element provided between a pixel electrode and an opposite electrode opposed to the pixel electrode driven by current that flows between the pixel electrode and the opposite electrode. A potential of the gate electrode of the second transistor being able to be shifted by supplying to the first electrode of the holding capacitor with a predetermined signal after the selecting pulse becomes non-selective.
Abstract:
A display device having a substrate, a power supply line, and a pixel electrode. The display device also having a transistor having a gate electrode and electrically coupled between the power supply line and the pixel electrode, a opposite electrode, and an organic semiconductor film disposed between the pixel electrode and the opposite electrode. The display device further having a holding capacitor having a first electrode electrically coupled to the gate electrode of the transistor, a second electrode, and a first insulation film disposed between the first electrode and second electrode and a second insulation film. The holding capacitor of the display device being disposed between the substrate and the second insulation film and at a part of the second insulation film being disposed between the pixel electrode and the substrate.
Abstract:
For the purpose of providing a display apparatus capable of improving display quality by expanding the light-emission area of pixels by improving the layout of pixels and common power-feed lines formed on a substrate, pixels (7A, 7B) including a light-emission element (40), such as an electroluminescence element or an LED element, are arranged on both sides of common power-feed lines (com) so that the number of common power-feed lines (com) is reduced. Further, the polarity of a driving current flowing between the pixels (7A, 7B) and the light-emission element (40) is inverted so that the amount of current flowing through the common power-supply lines “com” is reduced.
Abstract:
A transistor circuit is provided including a driving transistor where conductance between the source and the drain is controlled in response to a supplied voltage, and a compensating transistor where the gate is connected to one of the source and the drain, the compensating transistor being connected so as to supply input signals to the gate of the driving transistor through the source and drain. In a transistor circuit where conductance control in a driving transistor is carried out in response to the voltage of input signals, it is possible to control the conductance by using input signals of a relatively low voltage and a variance in threshold characteristics of driving transistors is compensated. With this transistor circuit, a display panel that can display picture images with reduced uneven brightness is achieved.
Abstract:
In an active-matrix substrate, an electro-optical device, and a method for manufacturing an active-matrix substrate, to effectively prevent TFTs and other devices formed on a substrate from being destroyed by static electricity generated in a rubbing process for an alignment film or the like, a pixel section (81) in which each pixel electrode is formed in a matrix, a data-line driving circuit (60), a scanning-line driving circuit (70), and an external-connection terminal (13) are formed in each panel area (20) of a large substrate (200) and an antistatic common wiring (48) is made from a conductive layer, when the active-matrix substrate (2) is manufactured. This common wiring (48) is formed so as to cross over the boundary of adjacent panel areas and collects static electricity generated when the rubbing process is applied to the large substrate (200), and the charges are dispersed. Although TFTs made in the low-temperature process are weak against electrostatic destruction, the common wiring (48) protects the TFTs from electrostatic destruction.