摘要:
A display device having a scanning line, a data line, a power supply line, and a pixel. The pixel having a first transistor supplied with a selecting pulse of a scanning signal, a holding capacitor having a first electrode and a second electrode that holds an image signal from the data line and the first thin film transistor. The pixel also having a second transistor controlled by the image signal, a gate of the second transistor being electrically connected to the second electrode, and a luminescent element provided between a pixel electrode and an opposite electrode opposed to the pixel electrode driven by current that flows between the pixel electrode and the opposite electrode. A potential of the gate electrode of the second transistor being able to be shifted by supplying to the first electrode of the holding capacitor with a predetermined signal after the selecting pulse becomes non-selective.
摘要:
A display apparatus, that includes current driving type luminescent elements, has a driving system that takes the conduction types of TFTs to control the emission of the luminescent elements into consideration. In order to reduce driving voltage and improve display quality simultaneously, the arrangement is provided such that if the second TFT which performs the “on-off” function of the current for the luminescent element is of an N channel type, the potential of the common power supply line (“com”) is lowered below the potential of the opposite electrode (“op”) of the luminescent element to obtain a higher gate voltage (“Vgcur”). In this case, if the first TFT connected to the gate of the second TFT is of a P channel type, when using the potential of the potential-holding electrode (“st”) at the “on” state as a reference, potentials of the scanning signal (“Sgate”) at the lower potential and the common power supply line (“com”) are rendered of the same polarities with respect to this potential of the potential-holding electrode (“st”). Therefore, the potential of the image signal (“data”) to turn “on” can be shifted within the range of the driving voltage in the display apparatus in the direction to reduce resistances at the “on” states of the first TFT and the second TFT to reduce driving voltage and improve display quality.
摘要:
A display apparatus, that includes current driving type luminescent elements, has a driving system that takes the conduction types of TFTs to control the emission of the luminescent elements into consideration. In order to reduce driving voltage and improve display quality simultaneously, the arrangement is provided such that if the second TFT which performs the “on-off” function of the current for the luminescent element is of an N channel type, the potential of the common power supply line (“com”) is lowered below the potential of the opposite electrode (“op”) of the luminescent element to obtain a higher gate voltage (“Vgcur”). In this case, if the first TFT connected to the gate of the second TFT is of a P channel type, when using the potential of the potential-holding electrode (“st”) at the “on” state as a reference, potentials of the scanning signal (“Sgate”) at the lower potential and the common power supply line (“com”) are rendered of the same polarities with respect to this potential of the potential-holding electrode (“st”). Therefore, the potential of the image signal (“data”) to turn “on” can be shifted within the range of the driving voltage in the display apparatus in the direction to reduce resistances at the “on” states of the first TFT and the second TFT to reduce driving voltage and improve display quality.
摘要:
A display apparatus, that includes current driving type luminescent elements, has a driving system that takes the conduction types of TFTs to control the emission of the luminescent elements into consideration. In order to reduce driving voltage and improve display quality simultaneously, the arrangement is provided such that if the second TFT which performs the “on-off” function of the current for the luminescent element is of an N channel type, the potential of the common power supply line (“com”) is lowered below the potential of the opposite electrode (“op”) of the luminescent element to obtain a higher gate voltage (“Vgcur”). In this case, if the first TFT connected to the gate of the second TFT is of a P channel type, when using the potential of the potential-holding electrode (“st”) at the “on” state as a reference, potentials of the scanning signal (“Sgate”) at the lower potential and the common power supply line (“com”) are rendered of the same polarities with respect to this potential of the potential-holding electrode (“st”). Therefore, the potential of the image signal (“data”) to turn “on” can be shifted within the range of the driving voltage in the display apparatus in the direction to reduce resistances at the “on” states of the first TFT and the second TFT to reduce driving voltage and improve display quality.
摘要:
A display apparatus, that includes current driving type luminescent elements, has a driving system that takes the conduction types of TFTs to control the emission of the luminescent elements into consideration. In order to reduce driving voltage and improve display quality simultaneously, the arrangement is provided such that if the second TFT which performs the “on-off” function of the current for the luminescent element is of an N channel type, the potential of the common power supply line (“com”) is lowered below the potential of the opposite electrode (“op”) of the luminescent element to obtain a higher gate voltage (“Vgcur”). In this case, if the first TFT connected to the gate of the second TFT is of a P channel type, when using the potential of the potential-holding electrode (“st”) at the “on” state as a reference, potentials of the scanning signal (“Sgate”) at the lower potential and the common power supply line (“com”) are rendered of the same polarities with respect to this potential of the potential-holding electrode (“st”). Therefore, the potential of the image signal (“data”) to turn “on” can be shifted within the range of the driving voltage in the display apparatus in the direction to reduce resistances at the “on” states of the first TFT and the second TFT to reduce driving voltage and improve display quality.
摘要:
A display type image sensor using thin-film photoelectric conversion elements that function as light emitting elements and light receiving elements so that the sensor can be used both as an active matrix display and as an image sensor, wherein pixels (PX) arranged in matrix each comprise: a first pixel portion (PXA) having a first conduction control circuit (SWA) supplied with a scan signal through a scan line (gate) and a first thin-film photoelectric conversion element (11A) which can emit and receive light and connects to a first interconnect (D21) and a second interconnect (D22) through the first conduction control circuit (SWA); and a second pixel portion (PXB) having a second conduction control circuit (SWB) supplied with a scan signal through the same scan line (gate) and a second thin-film photoelectric conversion element (11B) which can emit and receive light and connects to the first interconnect (D21) and a third interconnect (D23) through the second conduction control circuit (SWB).
摘要:
Electronic devices are provided with electrically conductive interconnections which are formed on the insulator material. Such electronic devices include, for example, thin film semiconductor devices (TFT), metal-insulator-metallic type non-wiring elements (MIM), solar cells, Large Scale Integration devices (LSI) or printed-wiring boards. At least a part of the electrically conductive interconnections are made of .alpha.-structure tantalum (Ta) which contains hydrogen. The .alpha.-structure tantalum does not have cubical crystals in its crystal system, but rather has body-centered cubes (bcc). The resistivity of the .alpha.-structure tantalum is from about 20 .mu..OMEGA. centimeters to about 60 .mu..OMEGA. centimeters. When hydrogen is included within this .alpha.-structure tantalum film, small amounts of nitrogen may be contained along with the hydrogen in the film. When a semiconductor layer is directly formed on the lower conductive layer, the upper conductive layer contains, as a primary component, the hydrogen contained .alpha.-structure tantalum.
摘要:
A display apparatus, that includes current driving type luminescent elements, has a driving system that takes the conduction types of TFTs to control the emission of the luminescent elements into consideration. In order to reduce driving voltage and improve display quality simultaneously, the arrangement is provided such that if the second TFT which performs the “on-off” function of the current for the luminescent element is of an N channel type, the potential of the common power supply line (“com”) is lowered below the potential of the opposite electrode (“op”) of the luminescent element to obtain a higher gate voltage (“Vgcur”). In this case, if the first TFT connected to the gate of the second TFT is of a P channel type, when using the potential of the potential-holding electrode (“st”) at the “on” state as a reference, potentials of the scanning signal (“Sgate”) at the lower potential and the common power supply line (“com”) are rendered of the same polarities with respect to this potential of the potential-holding electrode (“st”). Therefore, the potential of the image signal (“data”) to turn “on” can be shifted within the range of the driving voltage in the display apparatus in the direction to reduce resistances at the “on” states of the first TFT and the second TFT to reduce driving voltage and improve display quality.
摘要:
For the purpose of providing a display apparatus capable of improving display quality by expanding the light-emission area of pixels by improving the layout of pixels and common power-feed lines formed on a substrate, pixels (7A, 7B) including a light-emission element (40), such as an electroluminescence element or an LED element, are arranged on both sides of common power-feed lines (com) so that the number of common power-feed lines (com) is reduced. Further, the polarity of a driving current flowing between the pixels (7A, 7B) and the light-emission element (40) is inverted so that the amount of current flowing through the common power-supply lines “com” is reduced.
摘要:
A method of driving an electro-luminescent apparatus including a scanning line, a data line, a power supply line, a pixel electrode, an opposite electrode, a luminescent element interposed between the pixel electrode and the opposite electrode, a first transistor, and a second transistor. In this method, setting a first potential of the power supply line and a second potential of the opposite electrode such that the first potential is higher than the second potential, and setting a first gate voltage that is applied to the first gate electrode and that makes the power supply line be electrically connected to the pixel electrode through the first transistor such that the first gate voltage is equal to or higher than the second potential set by the setting of the first potential and the second potential.