Abstract:
A magnetron can be inspected with high accuracy. A life of the magnetron is determined on the basis of a comparison between a current parameter, which indicates a current status of the magnetron and is obtained from the one or more measurement values for specifying a current status of the magnetron at a time point when a time period having a predetermined duration or more has elapsed after generation of a high frequency power by the magnetron is started, and a difference between a power of a progressive wave and a set power is equal to or lower than a first predetermined value and a power of a reflection wave is equal to or lower than a second predetermined value, and an initial parameter, which indicates an initial status of the magnetron and corresponds to the current parameter.
Abstract:
Provided is a plasma processing apparatus that performs a processing on a processing target object using plasma. The plasma processing apparatus includes a processing container and a plasma generating mechanism including a high frequency generator disposed outside of the processing container to generate high frequency waves. The plasma generating mechanism generates plasma in the processing container using the high frequency waves and includes: a high frequency oscillator that oscillates the high frequency waves; a power supply unit that supplies a power to the high frequency oscillator; a waveguide path that propagates the high frequency waves oscillated by the high frequency oscillator to the processing container side which becomes a load side; and a voltage standing wave ratio variable mechanism that varies a voltage standing wave ratio of voltage standing waves formed in the waveguide path by the high frequency waves, according to the power supplied from the power supply unit.
Abstract:
A plasma processing apparatus includes a plasma generating device configured to generate a plasma within a processing vessel by using a high frequency wave generated by a microwave generator 41 including a magnetron 42 configured to generate the high frequency wave; detectors 54a and 54b configured to measure a power of a traveling wave that propagates to a load side and a power of a reflected wave reflected from the load side, respectively; and a voltage control circuit 53a configured to control a voltage supplied to the magnetron 42 by a power supply 43. Further, the voltage control circuit 53a includes a load control device configured to supply, to the magnetron 42, a voltage corresponding to a power calculated by adding a power calculated based on the power of the reflected wave measured by the detector 54b to the power of the traveling wave measured by the detector 54a.