Abstract:
An electromechanical component arrangement for a gas turbine engine includes a mechanical component located at a first side of a firewall of a gas turbine engine and an electronic module of the electromechanical component in communication with the mechanical component separated from the mechanical component by a firewall, the firewall comprising a first side and a second side, the second side having a lower operating temperature than the first side. A vibration isolation structure is located at the second side. The electronic module is connected thereto and includes at least one vibration isolator secured to the firewall to vibrationally isolate the electronic module from gas turbine engine vibrations.
Abstract:
A system of a machine is provided. The system having: a network of a plurality of sensing/control/identification devices distributed throughout the machine, at least one of the plurality of sensing/control/identification devices associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals; shielding surrounding at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component; and a remote processing unit operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals, wherein the at least one of the plurality of sensing/control/identification devices has internal memory independent of the remote processing unit, the internal memory having historical data corresponding to the least one sub-system component.
Abstract:
Sensing/control/identification devices for machines are provided. The devices include a first stage having a rectification and power conditioning module configured to receive electromagnetic (EM) transmissions via waveguide confinement and convert said EM transmissions to electrical power, a communication interface module configured to receive power from the rectification and conditioning module and at least one of receive or transmit EM transmissions/communications via waveguide confinement, and a control module configured to receive EM transmission data from the communication interface for processing and/or preparing EM communications for transmission. The devices further include a second stage having a tunable control module configured to process and convert instructions or commands from the control module of the first stage into analog or digital signals and generate and transmit an output signal. At least one connection is between the first stage and the second stage to enable communication between the first and second stages.
Abstract:
A multiplexed sensor system includes a control unit in communication with a plurality of sensors. A plurality of optic fibers defines a communication path between the plurality of sensors and the control unit. A multiplexing portion communicates with a plurality of sensors along a common one of the plurality of optic fibers and a protected channel through which at least a portion of the optic fibers are routed. The protected channel at least partially surrounds the optic fibers and shields the optic fibers from an environment outside the protected channel. A cooling flow is provided through the protective channel for minimizing temperature fluctuations within the protective channel. A method is also disclosed.
Abstract:
A thermoelectric conditioning arrangement may comprise a first antenna/splitter configured to transmit a power & control signal, a second antenna/splitter configured to receive the power & control signal, a waveguide coupled between the first antenna/splitter and the second antenna/splitter, wherein the power & control signal is guided from the first antenna/splitter to the second antenna/splitter via the waveguide, a power converter configured to receive the power & control signal from the second antenna/splitter and generate a direct current (DC) signal, and a thermoelectric cooler (TEC) configured to receive the DC signal from the power converter.
Abstract:
A system of a machine includes a network of a plurality of sensing/control/identification devices distributed throughout the machine. Each of the sensing/control/identification devices is associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals. Shielding surrounds at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component. A communication path is integrally formed in a component of the machine to route a portion of the electromagnetic signals through the component. The communication path comprises a material transparent to the electromagnetic signals. The system also includes a remote processing unit operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals.
Abstract:
A system includes a network of a plurality of sensing/control/identification devices distributed throughout a machine, each of the sensing/control/identification devices associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals. Shielding surrounds at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component. A communication path is integrally formed in a component of the machine to route a portion of the electromagnetic signals through the component and a remote processing unit operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals, wherein at least a portion of the sensing/control/identification devices comprise a wide band gap semiconductor device.
Abstract:
The present disclosure relates generally to a gas turbine engine that includes a fan configured to generate a fanstream and a fanstream duct configured to receive the fanstream flowing therethrough. An engine electronic component is positioned in flow communication with the fanstream. A heating element is positioned in the fanstream upstream from the engine electronic component and is operative to heat at least a portion of the fanstream in flow communication with the engine electronic component. The position of the engine electronic component passively thermally conditions the engine electronic component and the heating element actively thermally conditions the engine electronic component.
Abstract:
A wave guide assembly for a control and diagnostic system for a machine includes a housing defining an exterior surface and an internal cavity extending between distal ends. At least one wave guide within the internal cavity defines a wave propagation passage for at least one wave form signal. At least one conductor within the internal cavity is separate from the wave guide. A control and diagnostic system for a machine and a gas turbine engine are also disclosed.
Abstract:
Sensing/control/identification devices of machines are provided. The devices include a shielding defining a shielded volume, a rectification and power conditioning module within the shielded volume and configured to receive electromagnetic (EM) transmissions from an EM transmitting source and convert said EM transmissions to electrical power, a communication interface module within the shielded volume and configured to receive power from the rectification and power conditioning module and at least one of receive the EM transmissions or transmit EM communications, and a control module within the shielded volume and configured to at least one of (i) receive the EM transmissions from the communication interface for processing or prepare the EM communications for transmission from the communication interface module and (ii) communicate with a remote sensor of the machine.