Abstract:
A connecting joint for attaching a wind turbine blade to a rotor hub includes an insert configured to be coupled to the wind turbine blade. The insert includes a main body having an outer surface configured to interface with the blade, a first tubular extension extending from the main body and having inner and outer surfaces configured to interface with the blade, and a second tubular extension extending away from the main body and having inner and outer surfaces configured to interface with the blade. A wind turbine blade having such a connecting joint is also disclosed. Additionally, a method of making a wind turbine blade including the connecting joint is disclosed.
Abstract:
A wind turbine blade assembly comprising: a first wind turbine blade portion having a first attachment portion and a first metallic plate, a second wind turbine blade portion having a second attachment portion and a second metallic plate, and at least one tension member for coupling to the first and second attachment portions to join the first wind turbine blade portion to the second wind turbine blade portion, wherein the first and second metallic plates are configured to abut in compression due to tension in the tension member when the first wind turbine blade portion is joined to the second wind turbine blade portion with the at least one tension member. Also, a method of joining blade portions to construct a blade.
Abstract:
A connecting joint for attaching a wind turbine rotor blade to a rotor hub includes a bolt having a blade end configured to be coupled to the rotor blade and a hub end configured to be coupled to the rotor hub. The bolt includes a neck region adjacent the blade end, wherein the neck region has a cross dimension less than a cross dimension of the blade end of the bolt. A wind turbine blade having such a connecting joint is also disclosed. Additionally, a method of making the connecting joint is disclosed.
Abstract:
A wind turbine blade comprising a lightning protection system is provided. The lightning protection system comprises a lightning conductor located along a longitudinal portion of the wind turbine blade and is coupled to an electrical ground. A lightning receptor module is arranged on an external surface of the wind turbine blade and electrically coupled to the lightning conductor. An elongate receptor band is installed on the external surface of the wind turbine blade, over the lightning receptor module, and the receptor band is arranged to receive a stroke of lightning and transfer electrical current from the lightning stroke to the lightning conductor through the lightning receptor module. Further, the elongate receptor band comprises a crease in a longitudinal cross-sectional profile of the elongate receptor band. A method of installing a lightning protection system on a wind turbine blade is further provided.
Abstract:
The present invention relates to a method of manufacturing a wind turbine blade or a part of a wind turbine blade. The method comprises arranging at least one of layer of uncured resin pre-impregnated fibres, called prepregs, and at least one layer of cured fibre reinforced resin in an at least partly overlaying relationship, and curing the resin of the at least one layer comprising uncured resin. The at least one layer of cured fibre reinforced resin is assembled with at least one layer of uncured resin-preimpregnated fibres prior to being placed on a moulding surface. The method may e.g. be used to manufacture a wind turbine blade shell member or a wind turbine blade spar member. The invention further relates to a wind turbine blade shell member or a wind turbine blade spar member manufactured by such a method. The invention further relates to a pre-form for use in a wind turbine blade, the pre-form comprising at least one of layer of uncured resin pre-impregnated fibres and at least one layer of cured fibre reinforced resin in an at least partly overlaying relationship.
Abstract:
The invention relates to a method for curing of a composite material. The method involves applying heat to only a first region of said composite material, such that said first region is heated to a temperature above the cure onset temperature of said curable resin, thus initiating curing of said curable resin in said first region; and maintaining the composite material in an insulated state, such that the curing of said curable resin spreads to regions of the composite material outside of said first region.
Abstract:
A wind turbine blade comprising a lightning protection system is provided. The lightning protection system comprises a lightning conductor located along a longitudinal portion of the wind turbine blade and is coupled to an electrical ground. A lightning receptor module is arranged on an external surface of the wind turbine blade and electrically coupled to the lightning conductor. An elongate receptor band is installed on the external surface of the wind turbine blade, over the lightning receptor module, and the receptor band is arranged to receive a stroke of lightning and transfer electrical current from the lightning stroke to the lightning conductor through the lightning receptor module. Further, the elongate receptor band comprises a crease in a longitudinal cross-sectional profile of the elongate receptor band. A method of installing a lightning protection system on a wind turbine blade is further provided.
Abstract:
A wind turbine blade includes a first blade section and a second blade section configured to be coupled together at a joint interface. The blade further includes a connection joint for coupling the first and second blade sections together. The connection joint includes a plurality of connecting elements integrated into the first and second blade sections at the first and second blade interfaces. The connection joint further includes cross pins and fasteners for making the connection. A method of making a wind turbine blade section and a wind turbine blade made from such sections are also disclosed.
Abstract:
A method of making a wind turbine blade is described. The blade comprises an outer shell having a laminate structure. The method comprises providing a blade mould (82) defining a shape of at least part of the outer shell of the blade. The mould extends in a spanwise direction between a root end (94) and a tip end (96), and extends in a chordwise direction between a leading edge (90) and a trailing edge (92). The method further includes providing a plurality of dry plies (66) comprising dry structural fibrous material and a plurality of prepreg (68) plies comprising structural fibrous material impregnated with resin. The plurality of dry plies and the plurality of prepreg plies are arranged in the mould to form a plurality of layers of the laminate structure of the outer shell of the blade. The plies are arranged in the mould such that the dry plies are interleaved with the prepreg plies to form a hybrid shell structure in which the plies are arranged in a staggered relationship such that corresponding edges of the dry plies are offset from one another in the spanwise and/or chordwise direction of the mould and/or corresponding edges of the prepreg plies are offset from one another in the span-wise and/or chordwise direction of the mould.
Abstract:
A shear web for a wind turbine blade is described. The shear web comprises a panel and a web head. A longitudinal edge of the panel is received within a slot defined in the web head. A plurality of discrete spring features are attached to the longitudinal edge of the panel. The spring features are mutually spaced apart at intervals along the length of the longitudinal edge. The spring features compress against a base of the slot when the longitudinal edge region of the panel is inserted into the slot.