Abstract:
Techniques for surfacing host-side flash storage capacity to a plurality of VMs running on a host system are provided. In one embodiment, the host system creates, for each VM in the plurality of VMs, a flash storage space allocation in a flash storage device that is locally attached to the host system. The host system then causes the flash storage space allocation to be readable and writable by the VM as a virtual flash memory device.
Abstract:
System and method for checking and characterizing metadata of snapshots utilize a snapshot metadata database to execute at least one of checking and characterizing operations on the metadata of snapshots. The snapshot metadata database includes information extracted from backing storage elements containing the metadata of snapshots.
Abstract:
Techniques for tuning the key space of an instance of a tree data structure are provided. In one embodiment, a computer system can receive a request to create the instance, where the request includes an expected key space value indicating an expected range of key values to be addressed by the instance. The computer system can further calculate a number of bits to allocate to each key of each node of the instance based on the expected key space value. The computer system can then, at a time of instantiating each node of the instance, allocate the keys for the node in accordance with the calculated number of bits.
Abstract:
A method for restoring a data volume using incremental snapshots of the data volume includes creating a first series of incremental snapshots according to a first predefined interval. The method further includes creating a second series of incremental snapshots according to a second predefined interval that is an integer multiple of the first predefined interval. The method also includes receiving a request to restore the data volume to a point-in-time. The method further includes restoring the data volume to the point-in-time using none or some of the snapshots in the first series that were created at or prior to the point-in-time, and all of the snapshots in the second series that were created at or prior to the point-in-time.
Abstract:
Techniques for dynamically allocating keys in an instance of a tree data structure are provided. In one embodiment, a computer system can, at a time of instantiating each non-root node in the instance, determine a key space to be addressed by the non-root node, where the key space is based on a key subinterval in a parent node of the non-root node that is associated with a pointer to the non-root node. The computer system can further calculate a number of bits to allocate to each key of the non-root node in view of the determined key space. The computer system can then allocate the keys of the non-root node in accordance with the calculated number of bits.
Abstract:
Techniques for dynamically managing the placement of blocks of a logical file between a flash storage tier and an HDD storage tier are provided. In one embodiment, a computer system can collect I/O statistics pertaining to the logical file, where a first subset of blocks of the logical file are stored on the flash storage tier and where a second subset of blocks of the logical file are stored on the HDD storage tier. The computer system can further generate a heat map for the logical file based on the I/O statistics, where the heat map indicates, for each block of the logical file, the number of times the block has been accessed. The computer system can then identify, using the heat map, one or more blocks of the logical file as being performance-critical blocks, and can move data between the flash and HDD storage tiers such that the performance-critical blocks are placed on the flash storage tier.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
User data of different snapshots for the same virtual disk are stored in the same storage object. Similarly, metadata of different snapshots for the same virtual disk are stored in the same storage object, and log data of different snapshots for the same virtual disk are stored in the same storage object. As a result, the number of different storage objects that are managed for snapshots do not increase proportionally with the number of snapshots taken. In addition, any one of the multitude of persistent storage back-ends can be selected as the storage back-end for the storage objects according to user preference, system requirement, snapshot policy, or any other criteria. Another advantage is that the storage location of the read data can be obtained with a single read of the metadata storage object, instead of traversing metadata files of multiple snapshots.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.