Ground plane detection to verify depth sensor status for robot navigation

    公开(公告)号:US10656646B2

    公开(公告)日:2020-05-19

    申请号:US15841605

    申请日:2017-12-14

    Abstract: An example method includes determining a target area of a ground plane in an environment of a mobile robotic device, where the target area of the ground plane is in front of the mobile robotic device in a direction of travel of the mobile robotic device. The method further includes receiving depth data from a depth sensor on the mobile robotic device. The method also includes identifying a portion of the depth data representative of the target area. The method additionally includes determining that the portion of the depth data lacks information representing at least one section of the target area. The method further includes providing an output signal identifying at least one zone of non-traversable space for the mobile robotic device in the environment, where the at least one zone of non-traversable space corresponds to the at least one section of the target area.

    Ground plane detection to verify depth sensor status for robot navigation

    公开(公告)号:US09886035B1

    公开(公告)日:2018-02-06

    申请号:US14828445

    申请日:2015-08-17

    Abstract: An example method includes determining a target area of a ground plane in an environment of a mobile robotic device, where the target area of the ground plane is in front of the mobile robotic device in a direction of travel of the mobile robotic device. The method further includes receiving depth data from a depth sensor on the mobile robotic device. The method also includes identifying a portion of the depth data representative of the target area. The method additionally includes determining that the portion of the depth data lacks information representing at least one section of the target area. The method further includes providing an output signal identifying at least one zone of non-traversable space for the mobile robotic device in the environment, where the at least one zone of non-traversable space corresponds to the at least one section of the target area.

    Using Laser Sensors to Augment Stereo Sensor Readings for Robotic Devices

    公开(公告)号:US20170308086A1

    公开(公告)日:2017-10-26

    申请号:US15642530

    申请日:2017-07-06

    Abstract: An example system includes one or more laser sensors on a robotic device, where the one or more laser sensors are configured to produce laser sensor data indicative of a first area within a first distance in front of the robotic device. The system further includes one or more stereo sensors on the robotic device, where the stereo sensors on the robotic device are configured to produce stereo sensor data indicative of a second area past a second distance in front of the robotic device. The system also includes a controller configured to receive the laser sensor data, receive the stereo sensor data, detect one or more objects in front of the robotic device based on at least one of the laser sensor data and the stereo sensor data, and provide instructions for the robotic device to navigate based on the one or more detected objects.

    Imager for detecting visual light and projected patterns

    公开(公告)号:US11209265B2

    公开(公告)日:2021-12-28

    申请号:US16584770

    申请日:2019-09-26

    Inventor: Kurt Konolige

    Abstract: Methods and systems for depth sensing are provided. A system includes a first and second optical sensor each including a first plurality of photodetectors configured to capture visible light interspersed with a second plurality of photodetectors configured to capture infrared light within a particular infrared band. The system also includes a computing device configured to (i) identify first corresponding features of the environment between a first visible light image captured by the first optical sensor and a second visible light image captured by the second optical sensor; (ii) identify second corresponding features of the environment between a first infrared light image captured by the first optical sensor and a second infrared light image captured by the second optical sensor; and (iii) determine a depth estimate for at least one surface in the environment based on the first corresponding features and the second corresponding features.

    Automated data capture
    19.
    发明授权

    公开(公告)号:US11151744B1

    公开(公告)日:2021-10-19

    申请号:US16571841

    申请日:2019-09-16

    Abstract: Methods for annotating objects within image frames are disclosed. Information is obtained that represents a camera pose relative to a scene. The camera pose includes a position and a location of the camera relative to the scene. Data is obtained that represents multiple images, including a first image and a plurality of other images, being captured from different angles by the camera relative to the scene. A 3D pose of the object of interest is identified with respect to the camera pose in at least the first image. A 3D bounding region for the object of interest in the first image is defined, which indicates a volume that includes the object of interest. A location and orientation of the object of interest is determined in the other images based on the defined 3D bounding region of the object of interest and the camera pose in the other images.

Patent Agency Ranking