摘要:
A method and system for piece-picking or piece put-away within a logistics facility. The system includes a central server and at least one mobile manipulation robot. The central server is configured to communicate with the robots to send and receive piece-picking data which includes a unique identification for each piece to be picked, a location within the logistics facility of the pieces to be picked, and a route for the robot to take within the logistics facility. The robots can then autonomously navigate and position themselves within the logistics facility by recognition of landmarks by at least one of a plurality of sensors. The sensors also provide signals related to detection, identification, and location of a piece to be picked or put-away, and processors on the robots analyze the sensor information to generate movements of a unique articulated arm and end effector on the robot to pick or put-away the piece.
摘要:
Systems and methods are provided for identifying a location to perform work (e.g., drilling.). One exemplary method includes acquiring images of a hole in a first object from multiple lighting angles, processing the images to identify shadows cast by a wall of the hole at each of the lighting angles, and analyzing the shadows to determine an orientation of a central axis of the hole in a coordinate system of the first object. The method also includes, at a second object, selecting a location to drill that will be aligned with the central axis of the hole of the first object, and drilling the second object at the location.
摘要:
A computer system may determine a target position of the electronic component. The computer system may also determine a current position of the electronic component. The computer system may compare the current position to the target to position to determine whether the electronic component is in the target position. If the electronic component is not in the target position, the computer system may use an electroactive polymer to adjust the position of the electronic component to move the electronic component into the target position.
摘要:
A computer system may determine a target position of the electronic component. The computer system may also determine a current position of the electronic component. The computer system may compare the current position to the target to position to determine whether the electronic component is in the target position. If the electronic component is not in the target position, the computer system may use an electroactive polymer to adjust the position of the electronic component to move the electronic component into the target position.
摘要:
A programmable logic controller controls at least one robot to manipulate a plurality of workpieces. The programmable logic controller includes a sensor interface configured to receive sensor data that represents information of the workpieces. The programmable logic controller includes a scheduler configured to create a schedule that includes information representing an order in which the workpieces are to be manipulated. The schedule created by the scheduler is based on the sensor data. The programmable logic controller includes a synchronizer that is configured to receive the schedule. The synchronizer is configured to cause a robot to manipulate the workpieces based on the schedule and based on a function block. The function block is configured via the programmable logic controller.
摘要:
Example embodiments provide for robotic apparatuses that facilitate moving objects within an environment, such as to load or unload boxes or to construct or deconstruct pallets (e.g., from a container or truck bed). One example apparatus includes a horizontal conveyor and a robotic manipulator that are both provided on a moveable cart. A first end of the robotic manipulator is mounted to the moveable cart and a second end of the robotic manipulator has an end effector, such as a grasper. The apparatus also includes a control system configured to receive sensor data indicative of an environment containing a plurality of objects, and then cause the robotic manipulator to place an object from the plurality of objects on the horizontal conveyor.
摘要:
A system for calibrating a handling apparatus relative to a workpiece comprises a handling apparatus having at least one tool and at least one measuring arrangement configured to record at least one controlled variable; and a regulatory device configured to determine at least two faces in a multidimensional space and to provide a resultant line of intersection for the at least two faces as a trajectory coordinates using the at least one controlled variable when the at least one workpiece is moved by the at least one measuring arrangement, thereby providing an optimized trajectory profile for implementation.
摘要:
An example method for allowing a robot to assist with a task, the task being carried out in an environment including one or more non-human objects each having associated object locations, comprises detecting one or more changes in object locations within the environment, predicting a task requirement (such as a future object location change, or task goal) by comparing the change in the object location with stored data, the stored data including object location changes associated with previously observed tasks; and providing robotic assistance to achieve the task requirement. Example apparatus are also disclosed.
摘要:
In a method for identifying work pieces based on spatial coordinates. Each of a set of parts to be processed using a multi-axis, articulated spatial measurement arm, are marked with three points defining a distinctive triangle. In a data base, the side lengths of each distinctive triangle is referenced to the part it identifies and to related processing parameters. Before processing a part, the probe of the measurement arm is successively positioned on each of the marked points. Data processing equipment associated with the arm retrieves from the data base the identification of the part and the related parameters.
摘要:
A method for visualizing data generated by a robotic device is presented. The method includes displaying an intended path of the robotic device in an environment. The method also includes displaying a first area in the environment identified as drivable for the robotic device. The method further includes receiving an input to identify a second area in the environment as drivable and transmitting the second area to the robotic device.