摘要:
An electrostatically actuatable micro electromechanical device is provided with enhanced reliability and lifetime. The electrostatically actuatable micro electromechanical device comprises: a substrate, a first conductor fixed to the top layer of the substrate, forming a fixed electrode, a second conductor fixed to the top layer of the substrate, and a substrate area. The second conductor is electrically isolated from the first conductor and comprises a moveable portion, suspended at a predetermined distance above the first conductor, the moveable portion forming a moveable electrode which approaches the fixed electrode upon applying an actuation voltage between the first and second conductors. The selected substrate surface area is defined as the orthogonal projection of the moveable portion on the substrate between the first and second conductors. In the substrate surface area at least one recess is provided in at least the top layer of the substrate.
摘要:
A method is described for designing a micro electromechanical device in which the risk of self-actuation of the device in use is reduced. The method includes locating a first conductor in a plane and locating a second conductor with its collapsible portion at a predetermined distance above the plane. The method also includes laterally offsetting the first conductor by a predetermined distance from a region of maximum actuation liability. The region of maximum actuation liability is where an attraction force to be applied to activate the device is at a minimum.
摘要:
An electrostatically actuatable micro electromechanical device is provided with enhanced reliability and lifetime. The electrostatically actuatable micro electromechanical device comprises: a substrate, a first conductor fixed to the top layer of the substrate, forming a fixed electrode, a second conductor fixed to the top layer of the substrate, and a substrate area. The second conductor is electrically isolated from the first conductor and comprises a moveable portion, suspended at a predetermined distance above the first conductor, the moveable portion forming a moveable electrode which approaches the fixed electrode upon applying an actuation voltage between the first and second conductors. The selected substrate surface area is defined as the orthogonal projection of the moveable portion on the substrate between the first and second conductors. In the substrate surface area at least one recess is provided in at least the top layer of the substrate.
摘要:
A micromechanical resonator device and a method for measuring a temperature are disclosed. In one aspect, the device has a resonator body, an excitation module, a control module, and a frequency detection module. The resonator body is adapted to resonate separately in at least a first and a second predetermined resonance state, selected by applying a different bias, the states being of the same eigenmode but having a different resonance frequency, each resonance frequency having a different temperature dependence. The micromechanical resonator device may have a passive temperature compensated resonance frequency.
摘要:
A method for the production of a planar structure is disclosed. The method comprises producing on a substrate a plurality of structures of substantially equal height, and there being a space in between the plurality of structures. The method further comprises providing a fill layer of electromagnetic radiation curable material substantially filling the space between the structures. The method further comprises illuminating a portion of the fill layer with electromagnetic radiation, hereby producing a exposed portion and an unexposed portion, the portions being separated by an interface substantially parallel with the first main surface of the substrate. The method further comprises removing the portion above the interface.
摘要:
One inventive aspect relates a variable capacitor comprising first and second electrically conductive electrodes, arranged above a support structure and spaced apart from each other and defining the capacitance of the capacitor. At least one of the electrodes comprises at least one bendable portion. The bendable portion(s) are actuated by a DC voltage difference which is applied over the electrodes to vary the capacitance. In preferred embodiments, the support structure comprises a layer of higher permittivity than the atmosphere surrounding the electrodes and the electrodes configure as an interdigitated structure upon actuation. Also disclosed is a 2-mask process for producing such capacitors.
摘要:
Systems and methods for controlling a micro electromechanical device using power actuation are disclosed. The disclosed micro electromechanical systems comprise at least one electrostatically actuatable micro electromechanical device and an actuation device. The micro electromechanical device comprises a first conductor and a second conductor having a moveable portion which in use may be attracted by the first conductor as a result of a predetermined actuation power. The actuation device comprises a high frequency signal generator for generating at least part of the actuation power by means of a predetermined high frequency signal with a frequency higher than the mechanical resonance frequency of the moveable portion of the micro electromechanical device.
摘要:
A method is described for designing a micro electromechanical device in which the risk of self-actuation of the device in use is reduced. The method includes locating a first conductor in a plane and locating a second conductor with its collapsible portion at a predetermined distance above the plane. The method also includes laterally offsetting the first conductor by a predetermined distance from a region of maximum actuation liability. The region of maximum actuation liability is where an attraction force to be applied to activate the device is at a minimum.
摘要:
A method for the production of a planar structure is disclosed. The method comprises producing on a substrate a plurality of structures of substantially equal height, and there being a space in between the plurality of structures. The method further comprises providing a fill layer of electromagnetic radiation curable material substantially filling the space between the structures. The method further comprises illuminating a portion of the fill layer with electromagnetic radiation, hereby producing a exposed portion and an unexposed portion, the portions being separated by an interface substantially parallel with the first main surface of the substrate. The method further comprises removing the portion above the interface.