Abstract:
A range of concentrations exists in which fermentation inhibitors derived from pretreatment of lignocellulosic feed stocks inhibit growth of lactic acid bacteria without affecting fermentive yeast. By optimizing levels of fermentation inhibitors to fall within this range, yeast fermentations of lignocellulosic biomass can be conducted under non-sterile conditions with ethanol yields comparable to those achieved under sterile conditions. Optimised inhibitor levels can be achieved by controlling the water/biomass ratio of a lignocellulosic biomass during and after pretreatment, for example by washing the fiber fraction of a previously pretreated lignocellulosic biomass with a pre-defined amount of fresh water or recycled process solutions. Crude extracts of liquid fraction or process solutions from pretreatment of lignocellulosic biomass can also provide an effective anti-bacterial treatment for first generation starch fermentations.
Abstract:
Continuous transfer of particulate material into pressurized steam reactors is provided by “flow feeder” methods and devices. Material such as lignocellulosic biomass feedstocks are compacted into a “low density” plug,
Abstract translation:通过“流动给料器”方法和装置提供颗粒材料连续转移到加压蒸汽反应器中。 诸如木质纤维素生物质原料的材料被压实成<700kg / m 3的“低密度”塞子,通过利用蒸汽冷凝区域提供对加压蒸汽的动态密封。 蒸汽冷凝区移动到“低密度”塞中的速率被压实的材料进入加压反应器的速率所抵消。 优选的装置通过使用抵抗由卸载装置提供的反压作用的装载装置在流动给料室内紧凑的材料。 压实的材料被主动分解并通过卸载装置进料到反应器中。 在优选实施例中,压实材料在稳态操作中进料,其中蒸汽冷凝区域和低压入口区域之间的界面在流动给料室内保持静止。
Abstract:
The current invention concerns methods and products related to the production of alcohol from sugar cane and/or sweet sorghum with integration of 1st and 2nd generation (1G/2G) biorefining, thus comprising the integrated conversion of primary and secondary soft lignocellulosic biomass. In particular, methods of processing sugar cane and/or sweet sorghum feedstock are disclosed, said methods comprising the steps of providing raw juice from the feedstock, recovering a residual bagasse, pretreating the bagasse and mixing it with some quantity of raw juice, and hydrolyzing the pretreated bagasse enzymatically.
Abstract:
The present invention provides an apparatus and a method for conversion of cellulosic material, such as chopped straw and corn stover, and household waste, to ethanol and other products. The cellulosic material is subjected to continuous hydrothermal pre-treatment without addition of chemicals, and a liquid and a fiber fraction are produced. The fiber fraction is subjected to enzymatic liquefaction and saccharification. The method of the present invention comprises: performing the hydrothermal pre-treatment by subjecting the cellulosic material to at least one soaking operation, and conveying the cellulosic material through at least one pressurized reactor, and subjecting the cellulosic material to at least one pressing operation, creating a fiber fraction and a liquid fraction; selecting the temperature and residence time for the hydrothermal pretreatment, so that the fibrous structure of the feedstock is maintained and at least 80% of the lignin is maintained in the fiber fraction.
Abstract:
The present invention provides an apparatus and a method for conversion of cellulosic material, such as chopped straw and corn stover, and household waste, to ethanol and other products. The cellulosic material is subjected to continuous hydrothermal pre-treatment without addition of chemicals, and a liquid and a fibre fraction are produced. The fibre fraction is subjected to enzymatic liquefaction and saccharification. The method of the present invention comprises: performing the hydrothermal pre-treatment by subjecting the cellulosic material to at least one soaking operation, and conveying the cellulosic material through at least one pressurised reactor, and subjecting the cellulosic material to at least one pressing operation, creating a fibre fraction and a liquid fraction; selecting the temperature and residence time for the hydrothermal pretreatment, so that the fibrous structure of the feedstock is maintained and at least 80% of the lignin is maintained in the fibre fraction.
Abstract:
The invention relates, in general, to methods of processing lignocellulosic biomass to fermentable sugars and to methods that rely on hydrothermal pretreatment. Xylose monomer yields comparable to those achieved using two-stage pretreatments can be achieved from soft lignocellulosic biomass feedstocks by pretreating to very low severity in a single-stage pressurized hydrothermal pretreatment, followed by enzymatic hydrolysis to release xylose retained in the solid state. In some embodiments, pretreated biomass is separated into a solid fraction and a liquid fraction, the solid fraction subject to enzymatic hydrolysis, and the separated liquid fraction subsequently mixed with the hydrolysed solid fraction.
Abstract:
Methods and devices are provided for transfer of particulate material, such as biomass feedstocks, into and out of pressurized reactors. Improved sluice devices have an L-shaped sluice chamber having an upper, vertical component in communication with a horizontal loading chamber and a lower component in communication with a vertical reactor inlet or outlet. Piston valves seal the sluice inlet and outlet by axial displacement across the vertical component of the sluice chamber and across the vertical reactor inlet or outlet. Relative to other methods for reactor unloading, these devices consume less steam and significantly reduce furfural content of unloaded, pretreated biomass. An optional hybrid plug/sluice method of biomass feeding using the devices permits biomass loading at sluice pressures intermediate between atmospheric and reactor pressure, thereby reducing “pump cycle” time and increasing biomass throughput capacity.
Abstract:
The present invention provides an apparatus and a method for conversion of cellulosic material, such as chopped straw and corn stover, and household waste, to ethanol and other products. The cellulosic material is subjected to continuous hydrothermal pre-treatment without addition of chemicals, and a liquid and a fibre fraction are produced. The fibre fraction is subjected to enzymatic liquefaction and saccharification. The method of the present invention comprises: performing the hydrothermal pre-treatment by subjecting the cellulosic material to at least one soaking operation, and conveying the cellulosic material through at least one pressurised reactor, and subjecting the cellulosic material to at least one pressing operation, creating a fibre fraction and a liquid fraction; selecting the temperature and residence time for the hydrothermal pretreatment, so that the fibrous structure of the feedstock is maintained and at least 80% of the lignin is maintained in the fibre fraction.
Abstract:
A range of concentrations exists in which fermentation inhibitors derived from pretreatment of lignocellulosic feed stocks inhibit growth of lactic acid bacteria without affecting fermentive yeast. By optimizing levels of fermentation inhibitors to fall within this range, yeast fermentations of lignocellulosic biomass can be conducted under non-sterile conditions with ethanol yields comparable to those achieved under sterile conditions. Optimised inhibitor levels can be achieved by controlling the water/biomass ratio of a lignocellulosic biomass during and after pretreatment, for example by washing the fiber fraction of a previously pretreated lignocellulosic biomass with a pre-defined amount of fresh water or recycled process solutions. Crude extracts of liquid fraction or process solutions from pretreatment of lignocellulosic biomass can also provide an effective anti-baterial treatment for first generation starch fermentations.
Abstract:
The present invention relates to a process for liquefaction and saccharification of polysaccharide containing biomasses, having a relatively high dry matter content. The present invention combines enzymatic hydrolysis with a type of mixing relying on the principle of gravity ensuring that the biomasses are subjected to mechanical forces, primarily shear and tear forces. Furthermore, the present invention relates to the further utilization of such processed biomasses, e.g. for subsequent fermentation into bio-ethanol, bio-gas, specialty carbohydrates for food and fees as well as carbon feedstock for processing into plastics and chemicals.