Abstract:
ESD suppressor and manufacturing method thereof. The ESD suppressor include at least two printed circuit boards, one insulating frame, two terminal electrodes and two or more interior electrodes. The insulating frame is positioned between the two printed circuit boards, so as to form a main structure with a cavity. For each printed circuit board, at least one interior electrode is positioned on the surface facing the cavity and separated from other interior electrode(s). Two terminal electrodes are positioned on two different surfaces of the main structure and electrically connected to different interior electrodes respectively. Optionally, the insulating frame is a hallowed out printed circuit board or a frame formed by printing insulating material. In the manufacturing method, the thickness of the insulating frame is adjusted to adjust the relative distance between different printed circuit boards, so as to further adjust the breakdown voltage of the ESD suppressor
Abstract:
A ZnO surge arrester for high-temperature operation is characterized in that a grain boundary layer between ZnO grains thereof contains a BaTiO3-based positive temperature coefficient thermistor material, which takes 10-85 mol % in the overall grain boundary layer, and when operating temperature raises, the positive temperature coefficient thermistor material in the grain boundary layer has its resistance sharply increasing with the raising temperature, so as to compensate or partially compensate decrease in resistance of components in the grain boundary layer caused by the raising temperature, thereby making the resistance of the grain boundary layer in the ZnO surge arrester more independent of temperature. The ZnO surge arrester thus is suitable for operation where a maximum operating temperature is higher than 125° C., or even higher than 150° C.
Abstract:
A multilayer ceramic device comprises a laminated ceramic body having opposite end surfaces, a pair of conductive electrodes each respectively attached to one end surface of the laminated ceramic body and a plurality of alternately staggered internal electrodes within the laminated ceramic body configured in an alternating manner and each electrically connected to the corresponding conductive electrodes respectively; each conductive electrodes of the multilayer ceramic device is further covered with a solder paste layer so that the multilayer ceramic device is thus made without any plating step and no need of treating waste liquid nickel or waste liquid tin as well as no problem of environmental pollution caused by plating solution, thereby lowering manufacturing costs and reducing processing time.
Abstract:
A low-capacitance multilayer chip varistor has capacitance lower than 0.5 pF at 1 MHz and has a characteristic of resisting more than thousands of times of 8 KV electrostatic shock, which comprises a ceramic main body, outer electrodes disposed at two ends of the ceramic main body and inner electrodes disposed therein; the ceramic main body comprises inorganic glass of 3˜50 wt % and semi-conductive or conductive particles of 50˜97 wt % with particle size of more than 0.1 μm, and a layer of inorganic glass film covers the surface of semi-conductive or conductive particles, wherein the inorganic glass film contains semi-conductive or conductive particles of submicron or nanometer which is smaller than 1 micron, and the quantity contained of semi-conductive or conductive particles is less than 20 wt % of that of inorganic glass.
Abstract:
A process for producing zinc oxide varistors is to perform the doping of zinc oxide and the sintering of zinc oxide grains with a high-impedance sintering material through two independent procedures, so that the doped zinc oxide and the high-impedance sintering material are well mixed in a predetermined ratio and then used to make the zinc oxide varistors through conventional technology by low-temperature sintering (lower than 900° C.); the resultant zinc oxide varistors may use pure silver as inner electrode and particularly possess one or more of varistor properties, thermistor properties, capacitor properties, inductor properties, piezoelectricity and magnetism.
Abstract:
An electrical device package structure and manufacturing method thereof is disclosed. The manufacturing method comprises: providing an electrical device body having at least two electrodes, wherein an outer surface of the electrical device body is partially covered by the electrodes, and outer surfaces of the electrodes are covered by a plastic material; forming a first protective layer including phosphate salt at least on the exposed outer surface of the electrical device body; and forming a second protective layer including glass at least on an exposed outer surface of the first protective layer. The present invention can prevent the electrical device body and/or the electrodes from being damaged on their manufacturing process, and avoid a forming high impedance layer on an electrode.
Abstract:
A process for producing zinc oxide varistors possessed a property of breakdown voltage (V1mA) ranging from 230 to 1,730 V/mm is to perform the doping of zinc oxide and the sintering of zinc oxide grains with a high-impedance sintered powder through two independent procedures, so that the doped zinc oxide and the high-impedance sintered powder are well mixed in a predetermined ratio and then used to make the zinc oxide varistors through conventional technology by low-temperature sintering (lower than 900° C.); the resultant zinc oxide varistors may use pure silver as inner electrode and particularly possess breakdown voltage ranging from 230 to 1,730 V/mm.
Abstract:
A ZnO surge arrester for high-temperature operation is characterized in that a grain boundary layer between ZnO grains thereof contains a BaTiO3-based positive temperature coefficient thermistor material, which takes 10-85 mol % in the overall grain boundary layer, and when operating temperature raises, the positive temperature coefficient thermistor material in the grain boundary layer has its resistance sharply increasing with the raising temperature, so as to compensate or partially compensate decrease in resistance of components in the grain boundary layer caused by the raising temperature, thereby making the resistance of the grain boundary layer in the ZnO surge arrester more independent of temperature. The ZnO surge arrester thus is suitable for operation where a maximum operating temperature is higher than 125° C., or even higher than 150° C.
Abstract:
A multilayer zinc oxide varistor without bismuth oxide system ingredients, and having variable breakdown voltages by controlling the thickness of the ceramic material; the varistor is bismuth-free and composed of zinc oxide as the primary constituent with alkaline earth element (Ba) as first additive, at least one of transition elements of Mn, Co, Cr, or Ni as second additives, at least one of rare earth elements of Pr, La, Ce, Nd or Tb as third additives and at least one of B, Si, Se, Al, Ti, W, Sn, Sb, Na, or K as rest additives, and the bismuth-free and zinc oxide based varistor exhibits an excellent ESD (Electro-Static Discharge) withstanding characteristic.