Abstract:
A method for producing a green body includes forming a layer which contains a powder of a ceramic on a substrate, applying at least one solidifying composition on at least a part of the layer, repeating forming the layer and applying at least one solidifying composition at least one time, removing the solvent or dispersing agent at least in part for forming a green body, and removing the powder which has not bonded and thereby exposing the green body. The solidifying composition contains a dissolved or liquid organometallic compound, which has at least one atom other than C, Si, H, O, or N bonded to at least one organic moiety, an organic binding agent, and a solvent or dispersing agent.
Abstract:
There is provided a dielectric ceramic composition including a base powder, wherein the base powder includes: a first major component represented by BaTiO3, a second major component represented by (Na, K)NbO3, and a third major component represented by (Bi, Na)TiO3. The base powder is represented by xBaTiO3-y(Na, K)NbO3-z(Bi, Na)TiO3, where x+y+z=1, and x, y, and z are represented by mol, and x, y and z satisfy 0.5≦x≦0.97, 0.01≦y≦0.48, and 0.02≦z≦0.2, respectively. In certain embodiments, the base powder is be represented by xBaTiO3-y(Na0.5K0.5NbO3-z(Bi0.5Na0.5)TiO3.
Abstract:
A nuclear fuel element for use in water-cooled nuclear power reactors and an improved multilayered silicon carbide tube for use in water-cooled nuclear power reactors and other high temperature, high strength thermal tubing applications including solar energy collectors. The fuel element includes a multilayered silicon carbide cladding tube. The multilayered silicon carbide cladding tube includes (i) an inner layer; (ii) a central layer; and (iii) a crack propagation prevention layer between the inner layer and the central layer. A stack of individual fissionable fuel pellets may be located within the cladding tube. In addition, a thermally conductive layer may be deposited within the cladding tube between the inner layer of the cladding tube and the stack of fuel pellets. The multilayered silicon carbide cladding tube may also be adapted for other high temperature, high strength thermal tubing applications including solar energy collectors.
Abstract:
A thermistor material and a method for preparing a thermistor material are provided. The thermistor material is prepared by mixing and heating a mixture containing BaTiO3, B2O3, SiO2, Li2O, P2O5, Cs2O, Nd2O3, Al2O3 and TiO2.
Abstract:
A head has a base and a piezoelectric element which is superimposed on and fastened to the base in a thickness direction. The piezoelectric element has a plate-shaped piezoelectric body, and a common electrode and a individual electrode arranged so as to sandwich the piezoelectric body in the thickness direction. The base has a higher thermal expansion coefficient than the piezoelectric body (the piezoelectric element 23). The piezoelectric body has a tetragonal principal crystal phase, in which the degree of orientation of the c-axis toward one side in the thickness direction (positive side in z direction) in the region sandwiched by the common electrode and the individual electrode is 44% or more and 56% or less in terms of the Lotgering factor and in which the residual stress in the surface direction is 0 MPa or more and 35 MPa or less in the direction of compression.
Abstract:
An object of the present invention is to provide a ferrite magnetic material which can provide a permanent magnet retaining high Br and HcJ as well as having high Hk/HcJ. The ferrite magnetic material according to a preferred embodiment is a ferrite magnetic material formed of hard ferrite, wherein a P content in terms of P2O5 is 0.001% by mass or more.
Abstract translation:本发明的目的是提供一种能够提供保持高Br和HcJ的永磁体以及具有高Hk / HcJ的铁氧体磁性材料。 根据优选实施方案的铁氧体磁性材料是由硬质铁氧体形成的铁氧体磁性材料,其中以P 2 O 5计的P含量为0.001质量%以上。
Abstract:
The invention relates to compounds of the formula (I): (Ca,Sr,Ba)1-x-yMeySiN2:Eux, where Me═Mn2+, Mg2+, Be2+, Ni2+, Co2+ and/or Ru2+; x=0.005 to 0.20; and y
Abstract:
A process of producing ceramic-ceramic composites, including but not limited to nuclear fuels, and composites capable of exhibiting increased thermal conductivities. The process includes milling a first ceramic material to produce a powder of spheroidized particles of the first ceramic material, and then co-milling particles of a second ceramic material with the spheroidized particles of the first ceramic material to cause the particles of the second ceramic material to form a coating on the spheroidized particles of the first material. The spheroidized particles coated with the particles of the second ceramic material are then compacted and sintered to form the ceramic-ceramic composite, in which the second ceramic material forms a continuous phase completely surrounding the spheroidized particles of the first ceramic material.
Abstract:
A display window is formed by mechanically processing a transparent ceramic article. The composition of the ceramic article includes yttrium oxide and thorium oxide, the mole percentage of yttrium oxide is about 85% to about 94.99%, and the mole percentage of thorium oxide is about 4.99% to about 15%. The display window has a high light transmittance, good acid and alkali corrosion resistance, high hardness, long lifetime.
Abstract:
A sputtering target which is composed of a sintered body of an oxide which contains at least indium, tin, and zinc and includes a spinel structure compound of Zn2SnO4 and a bixbyite structure compound of In2O3. A sputtering target includes indium, tin, zinc, and oxygen with only a peak ascribed to a bixbyite structure compound being substantially observed by X-ray diffraction (XRD).
Abstract translation:一种溅射靶,其由至少含有铟,锡和锌的氧化物的烧结体构成,并且包括Zn2SnO4的尖晶石结构化合物和In 2 O 3的菱沸石结构化合物。 溅射靶包括铟,锡,锌和氧,只有通过X射线衍射(XRD)基本观察到由比克比结构化合物引起的峰。