Abstract:
A multi-stage method and apparatus for determining a faulty component location along an optical path through an optical fiber in an optical network are disclosed. The optical fiber carries a plurality of wavelengths, which may or may not be modulated by low frequency dither tones that are utilized for identification purposes and performance monitoring in the optical network. First, the method comprises measuring a total power of the optical fiber and a total wavelength power as a sum of powers of the individual wavelengths at a plurality of local detection points; comparing the measured powers at the local detection points; and determining whether or not a faulty detection point exists along the optical path. If a fault is identified, the method further provides a multi-stage fault detection procedure, which comprises measuring a total wavelength power loss between a local detection point and an adjacent detection point, between the local detection point and multiple non-adjacent detection points. A correlation of the measured total wavelength power losses between the various detection points is used for determining the faulty component location along the optical path. The apparatus, which incorporates the above multi-stage method for determining the faulty component location in the optical network, is also provided.
Abstract:
A method and system for providing protection of data communications in packet-based networks is provided, using a combination of unicast to multicast conversion and providing formation of virtual output queues (VOQs) which are separate for each pair of the target port and protection ports on the target network device. As a result, the system requires less bandwidth resources and reduces or eliminates network performance problems associated with other existing solutions.
Abstract:
A method and system for identification of a channel in an optical network is provided. The channel is identified by the use of unique combinations of two or more low frequencies, or tones, modulated onto the channel and optionally, a network parameter associated with the channel.
Abstract:
A high-speed packet memory is provided, the memory having a write port and a read port and comprised of the following: a plurality of N memory modules for storing fixed size cells, which are segments of a variable size packet divided into X cells, the X cells being grouped into [X/N] groups of cells; a read-write control block comprising a means for receiving cells from the write port and storing each cell, which belongs to the same group, in a selected different one of the N memory modules at the same memory address (the group address); a multi-cell pointer (MCP) storage for storing an MCP for said group of cells (an associated MCP) at an MCP address, the MCP having N memory module identifiers to record the order in which cells of said group of cells are stored in the N memory modules; and the MCP address being the same as the group address. Corresponding methods for storing cells and/or storing and retrieving variable size packet in such memory are also provided.
Abstract:
A method for the simultaneous graphical display of paths of optical wavelength channels in a telecommunications network together with one or more channel attributes is provided. The graphical display of the network also shows the direction of data flow transported by the channels. An audible or visual alarm for an error condition for a channel attribute on a link in the network can be produced if requires. The operator can also obtain detailed information on a channel by positioning the mouse over a channel.
Abstract:
A method for determining locations and gain settings of optical amplifiers in an optical network is provided. The method comprises evaluating allowable amplifier locations and successively eliminating selected locations until no further locations can be eliminated without the network violating predetermined specifications. This systematic method is applicable to a variety of network topologies and takes into account existing network limitations. In one embodiment, the method for determining the locations and gain settings of the amplifiers uses the amount of operating margin in the network to select locations to be eliminated. In another embodiment, the method is repeated a number of times with different selections of amplifier locations, and the method providing the arrangement with the least number of amplifiers is chosen.
Abstract:
A communications network has data and dedicated control network communication links between nodes. The control network is automatically and reliably created by each node determining each of its neighbor nodes to which it has a direct data link, each node having at least two neighbor nodes, and establishing a control network link for communicating control network traffic directly with each of these neighbor nodes. Each control network link can, if a dedicated control network link is not available, use bandwidth of a data link between the respective nodes, a link selection protocol being based on shared risk link groups and available bandwidth.
Abstract:
A method of transmitting packets from the source edge router through the label switch router to the destination edge router, comprising the steps of: assigning different protocol type indicators at the source edge router to user MPLS packets and to non-user MPLS packets of at least one additional protocol type; at the label switch router, forwarding MPLS packets received from the source edge router or another label switch router in such a manner as to preserve the protocol type indicator of the packet transport protocol of each received MPLS packet; at the destination edge router, recognizing the protocol type indicator of the transport protocol of the MPLS packets received from the label switch router, and segregating the user MPLS packets from non-user MPLS packets. Preferably, user and non-user MPLS packets are assigned the same MPLS label and sent via the same label switched path. Corresponding enhanced MPLS network is also provided.
Abstract:
An optical network including multiple nodes is subject to intermittent faults that may raise alarms in the system. The invention focuses on an optical network based on the Any rate architecture. A single fault such as a client failure at a node in such a network can give rise to a loss of client signal leading to multiple alarms detected at multiple points. To alleviate this problem this invention provides switching in a special Signature signal in place of the lost client signal. By detecting the Signature signal containing a specific code, the fault on the any rate-based architecture can be uniquely identified. In addition to fault identification, the Signature signal on the network makes it possible to maintain Clock and Data Recovery Locks at downstream nodes. The Signature signal serves also as a vehicle for carrying a special optical tag called Wavekey provided by the Wavelength Tracker technology developed by the Applicant. This optical tag includes a low frequency modulation of one or more dither tones onto an optical channel, which is uniquely identified by the tag. Maintaining the Wavekey is important for tracing the end-to-end path and power level of the signal on each wavelength. A method and a Field Programmable Gate Array-based system for the generation and identification of such a Signature signal that not only identifies the fault that has occurred on the optical network but also provides for the maintenance of the Wavekey, are described.
Abstract:
A method and system for automatic allocation of port addresses in a network is provided. The node performs a self-discovery after initial power-up, and for each port on the node, using unique values associated with the port in the network hierarchy, applies a function that allows for an inverse function to the set of values to generate a default unique address for the port. A typical hierarchical structure in a network is the network area, node, and, within the node, the shelf, the card and the port. Next, the node sends a frame including the default port address and node identifier, from the port to a connected node. The node polls the port for a frame with network information associated with the connected port on the other node. If a frame is received from the other node, the node applies a logical condition to the default and received port addresses, and, if the condition is satisfied, applies another function to the received port address to generate a new unique address for the port, and maintains the new port address within the node. The method is described for IP networks but can be equally applied to ATM or Frame Relay networks, and for any nodes that support Sub-network Access Protocol (SNAP).