Abstract:
A property of unconnected first and second fluid flows is matched, such as, but not limited to, matching the flow rate of the replacement water stream with the waste water stream in kidney dialysis. The first and second flow paths are interconnected so substantially the same flow from the first flow source encounters a first flow transducer which is in the first flow path and a second flow transducer which is in the second flow path. Transducer readings are taken for various identical values of the property of the first fluid flow. Then the first and second flow paths are disconnected, and the property, such as but not limited to flow rate, of one of the fluid flows in one of the flow paths is controlled using transducer readings and the previous interconnected-path transducer readings to match the property in the two flows. In one example, the transducers are uncalibrated transducers.
Abstract:
A property of unconnected first and second fluid flows is matched, such as, but not limited to, matching the flow rate of the replacement water stream with the waste water stream in kidney dialysis. The first and second flow paths are interconnected so substantially the same flow from the first flow source encounters a first flow transducer which is in the first flow path and a second flow transducer which is in the second flow path. Transducer readings are taken for various identical values of the property of the first fluid flow. Then the first and second flow paths are disconnected, and the property, such as but not limited to flow rate, of one of the fluid flows in one of the flow paths is controlled using transducer readings and the previous interconnected-path transducer readings to match the property in the two flows. In one example, the transducers are uncalibrated transducers.
Abstract:
A method for priming a hemodialyzer is disclosed. Hemodialyzer comprises a dialysate compartment, a blood compartment, and a dialysis membrane separating the dialysate and blood compartments. The method comprises the steps of delivering a liquid to a dialysate inlet of the dialysate compartment at a first volumetric delivery rate, passing the liquid through the dialysate compartment from the dialysate inlet to a dialysate outlet of the hemodialyzer and delivering the liquid from the dialysate outlet at a second volumetric delivery rate that is less than the first volumetric delivery rate so as to cause a net flow of the liquid from the dialysate compartment to the blood compartment through the dialysis membrane.
Abstract:
Methods for measuring the flow differential through a dialysis machine are disclosed in which the dialysis machine includes a heat exchanger having a primary side and a secondary side for exchanging heat therebetween. The method includes measuring the temperature differences across the primary and secondary sides of the heat exchanger and calculating the flow differential based upon these measured temperature differences. Apparatus for measuring such a flow differential is also disclosed, as are methods for calibrating that apparatus.
Abstract:
Apparatus for monitoring flow of a dialysis fluid through a dialyzer is disclosed including a computer for calculating the flow rate of the dialysis fluid into and out of the dialyzer based on the formula P-P.sub.O =k*Q.sup.n in which P is the pressure in the dialysis fluid between a throttle and a pump either upstream or downstream of the dialyzer, P.sub.O is the pressure in the dialysis fluid on the opposite side of the throttles from the pump, k is a characteristic coefficient for the throttle, Q is the flow of the dialysis fluid through the throttle, and N is a characteristic exponent for the throttle, and the apparatus includes microprocessor for calculating the values of k and P.sub.O prior to use and for calculating the value of P.sub.O during use of the dialyzer. Methods for carrying out such monitoring are also disclosed.
Abstract:
A flow rate measurement system and method suitable for monitoring filtrate flow in a hemodialysis apparatus, provides a pair of flow meters in series at the input of a dialyzer for producing electrical signals indicative of dialysate flow rate and a pair of flow meters in series at the output of the dialyzer for producing electrical signals indicative of dialysate plus filtrate flow rate. A computer receives the flow rate signals and is programmed to calibrate each flow meter during a calibration phase to correct for any variations in each pair to thereby produce corrective scale factors. During an operational phase of the apparatus, the program monitors the flow meters and provides an alarm if any changes between the readings of either of the pairs of flow meters occurs.
Abstract:
A blood circuit and a dialysate circuit bidirectionally circulate a fluid through a blood purification membrane of a blood purifier, and include a first flow route that causes a dialysate to flow from the dialysate circuit into the blood circuit through a connection flow route connecting the dialysate circuit to the blood circuit while bypassing the blood purifier, and a second flow route that causes the dialysate to flow from the dialysate circuit into the blood circuit through the blood purification membrane. The controller performs control such that blood in the blood circuit is returned to the body by feeding the dialysate to one of these flow routes, determine if a flow amount of the dialysate reaches a predetermined flow amount, and control such that the blood in the blood circuit is returned to the body by feeding the dialysate to the other one of these flow routes.
Abstract:
A method of preserving a sorbent device of a dialysis system, the method comprising—after administering a first dialysis treatment at the dialysis system and before administering a second dialysis treatment at the dialysis system—circulating a fluid through the sorbent device to prevent matter within the sorbent device from solidifying and circulating the fluid through a filter coupled to an outlet of the sorbent device to remove contaminants from the fluid.
Abstract:
The disclosed subject matter relates to extracorporeal blood processing or other processing of fluids. Volumetric fluid balance, a required element of many such processes, may be achieved with multiple pumps or other proportioning or balancing devices which are to some extent independent of each other. This need may arise in treatments that involve multiple fluids. Safe and secure mechanisms to ensure fluid balance in such systems are described.
Abstract:
The disclosed subject matter relates to extracorporeal blood processing or other processing of fluids. Volumetric fluid balance, a required element of many such processes, may be achieved with multiple pumps or other proportioning or balancing devices which are to some extent independent of each other. This need may arise in treatments that involve multiple fluids. Safe and secure mechanisms to ensure fluid balance in such systems are described.