Abstract:
Improving endurance of bead of radial tire for heavy vehicle. Tire has two beads (2) contacting rim (3) connected by carcass reinforcement (4) having carcass layer (5), with main part (6) wrapped, in each bead (2), axially from inside towards outside of the tire, around bead wire (7) having diameter (L), to form turnup (8) having free end (E). Each bead (2) has filling element (9) with filling compound (10) and extending radially towards outside from bead wire (7) and axially between turnup (8) and main part (6). The distance (I) between turnup (8) and main part (6) decreases continuously from bead wire (7) as far as a first minimum distance (a) reached at a first point (A) of turnup (8), then increases continuously from the first point (A) of turnup (8) as far as a first maximum distance (b) reached at a second point (B) of turnup (8).
Abstract:
It is found that the amount of wear of a tread rubber of a tire, which is abandoned as wear life of the tread rubber expires, is not uniform over the entire width, and there is a high correlation between distribution in the tread width direction of the remaining thickness of the tread rubber of the abandoned tire and distribution in the tread width direction of wear effective rubber volume. On the basis of this finding, it is possible to improve wear life of a pneumatic tire 1, by making volume distribution of a base rubber layer 8 of a tread rubber 4, which has a layered structure, equal to distribution of the wear effective rubber layer, so that the tread rubber 4 wears equally in the tread width direction.
Abstract:
In a cross section of this tire (1) orthogonal to the tire circumferential direction and running along the tread width direction, an end (7b) that is outside in the tire diameter direction of an electronic device (7) is located farther inward in the tire diameter direction than a reference position that is located outward in the tire diameter direction away from an outer rim end portion (2b), the outer rim end portion being located on the outside in the tire diameter direction of a rim contact surface, and the distance between the outer rim end portion and the reference position being equal to the thickness (T1) of a bead portion in the outer rim end portion.
Abstract:
A tire with a radial carcass reinforcement, having a crown reinforcement, itself capped radially by a tread connected to two beads by two sidewalls, the tread containing at least two layers of blended elastomeric compounds that are radially superposed and have a voids ratio that is lower in the central part than at the axially outer parts. A first layer of blended elastomeric compounds of the tread is made up of a first blended elastomeric compound forming a part extending at least into the region of the equatorial plane and of at least two axially outer parts formed of a second blended elastomeric compound, the first blended elastomeric compound having a macro dispersion Z-value higher than 65 and a maximum tan(δ) value, denoted tan(δ)max, lower than 0.150, and the elongation at break in a tearability test of the second blended elastomeric compound at 100° C. having a value at least 10% higher than that of the elongation at break of the first blended elastomeric compound in a tearability test at 100° C.
Abstract:
A tire with a radial carcass reinforcement, having a crown reinforcement, itself capped radially by a tread connected to two beads by two sidewalls, the tread having at least two layers of blended elastomeric compounds that are radially superposed and have a voids ratio that is lower in the central part than at the axially outer parts. A first layer of blended elastomeric compounds of the tread is made up of a first blended elastomeric compound forming a part extending at least into the region of the equatorial plane and of at least two axially outer parts formed of a second blended elastomeric compound, the first blended elastomeric compound having a macro dispersion Z-value higher than 65 and a maximum tan(δ) value, denoted tan(δ)max, lower than 0.120, and the complex dynamic shear modulus G* 1% at 100° C. of the second blended elastomeric compound having a value at least 10% higher than that of the complex dynamic shear modulus G* 1% at 100° C. of the first blended elastomeric compound.
Abstract:
A tire 1 includes plural land portions 40 formed on a tread portion 10. The plural land portions 40 are segmented by a circumferential direction groove 30 extending in a tire circumferential direction L and a width direction groove 20, or segmented by an end portion 10E of the tread portion 10 in the tire width direction W and the width direction groove 20. A length of the width direction groove 20 in the tire width direction W is not less than 30% of a length of the tread portion 10 in the tire width direction W. The width direction groove 20 has at least one angled portion 50A/50B configured to be bent toward an opposite direction to a tire rotational direction R on at least one side of a tire equator line CL.
Abstract:
A component Fin toward an axial inner direction of the tire which is an opposite direction from an axial outer direction of the tire is applied to a force acting on a kicking end 16B of a land portion 16. With this, abrasion of the kicking end of the land portion can be moderated, and a biased abrasion resistance can be enhanced. A groove wall 20 of a lug groove 14 is provided with a step portion 22, a tread side groove width WA in a tread side of the step portion is widened toward an axial outer side of the tire, and a width WS of the step portion 22 is increased toward the axial outer side of the tire, thereby suppressing the lift from the road surface 26 at the tread-in end 16A of the land portion 16.
Abstract:
The invention relates to improving the endurance of a bead of a radial tire for a heavy vehicle of construction plant type by reducing the compression to which the turn-up is subjected when the tire is driven on. According to the invention, for a tire for a heavy vehicle of construction plant type comprising two beads intended to come into contact with a rim having two rim flanges, a carcass reinforcement comprising at least one carcass reinforcement layer having a main part wrapped, within each bead, from the inside towards the outside of the tire, around a bead wire of substantially circular meridian section, to form a turn-up, a filling element extending the bead wire radially towards the outside and axially separating the main part and the turn-up, the distance (d) between a first segment of turn-up and the main part decreasing continuously, radially towards the outside, from the bead wire as far as a minimum distance (d1), the distance (d2) between a second segment of turn-up, extending the first segment of turn-up radially towards the outside, and the main part is substantially constant and equal to the minimum distance (d1) between the first segment of turn-up and the main part.
Abstract:
A construction vehicle tire, in which a temperature rise at the tread portion is suppressed by enhancing the heat radiation property at the tire center portion (C). Lug grooves (22) are arranged in the tread shoulder regions (S) on both sides in the tire width direction. The tire center portion (C) is formed with narrow grooves (24) extending substantially in the tire width direction (V) and having both ends terminating within the tread. A deep equatorial groove (26) extends in the tire circumferential direction on the tire equatorial plane (CL), and has a maximum depth within the range of from 70% to 110% of the depth of the lug grooves (22), so as to efficiently cool the bottom region (26B) of the deep equatorial groove (26) at high temperature.
Abstract:
An object of the present invention is to provide a pneumatic tire for a construction vehicle capable of suppressing deterioration in heat release property while maintaining high wear resistance especially when used as driving wheels.A central area 20 is provided with a central narrow groove 21 continuously extending along a tire circumferential direction in a zigzag form. Each side area 30 is provided with a side narrow groove 32. A width direction narrow groove 22 is provided The central narrow groove 21, the side narrow grooves 32 and the width direction narrow grooves 22 define plural polygonal block land portions 23 having five or more straight sides in the tread portion 10. The block land portions are lined in the tire circumferential direction to form two block arrays arranged next to each other.