Abstract:
An instantaneous/real-time wireless dynamic tire pressure sensor (DTPS) for characterizing pavement qualities and for detecting surface and subsurface pavement defects under normal driving conditions. Signal processing provides quantitative assessment of surface conditions. DTPS includes a vehicle tire valve stem-mounted pressure sensor and wheel hub-mounted signal conditioning, amplification, and transmitting circuitry. A signal processing computer within the vehicle is wirelessly coupled to the hub-mounted circuitry. Tire pressure changes caused by ground vibration excitation from the interaction between the tire and pavement at normal driving speeds are detected. When acoustic radiation from a surface wave is significantly stronger than acoustic noise, subsurface information can be extracted. An energy harvester based on strong magnetostatic coupling between a high permeability core solenoid, fixed proximate a vehicle wheel, and a bias magnet array, fixedly mounted in conjunction with a dust shield, can provide power the DIPS.
Abstract:
An instantaneous/real-time wireless dynamic tire pressure sensor (DTPS) for characterizing pavement qualities and for detecting surface and subsurface pavement defects under normal driving conditions. Signal processing provides quantitative assessment of surface conditions. DTPS includes a vehicle tire valve stem-mounted pressure sensor and wheel hub-mounted signal conditioning, amplification, and transmitting circuitry. A signal processing computer within the vehicle is wirelessly coupled to the hub-mounted circuitry. Tire pressure changes caused by ground vibration excitation from the interaction between the tire and pavement at normal driving speeds are detected. When acoustic radiation from a surface wave is significantly stronger than acoustic noise, subsurface information can be extracted. An energy harvester based on strong magnetostatic coupling between a high permeability core solenoid, fixed proximate a vehicle wheel, and a bias magnet array, fixedly mounted in conjunction with a dust shield, can provide power the DIPS.
Abstract:
A safety insert designed to be mounted in an assembly comprising a tire and a rim of a vehicle and device for detecting the bearing of the tire on an insert, so that the insert generates signals oriented parallel to the axis of rotation of the tire and rim assembly and so that the device detects and analyzes the vibrating signals of the chassis of the vehicle.
Abstract:
Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.
Abstract:
A safety insert is designed to be mounted in an assembly including a tire and a rim of a vehicle, so that on bearing of the tire against the insert, the insert will generate multiple vibrating signals of the rotation frequency of the tire. In one embodiment, the vibrating signals are generated by a variation of at least one of the outer radius and radial stiffness as a function of azimuth &agr;, which presents at least four maxima distributed in at least twice two different values M1 and M2.
Abstract:
A safety insert, intended to be mounted on a wheel rim inside a tire to support the crown of this tire in the event of a loss of inflation pressure, wherein the running radius of the safety insert under run-flat conditions varies with a frequency of variation that is appreciably equal to its frequency of rotation.
Abstract:
The system includes a plurality of sensor devices each arranged to monitor a respective physical or operating magnitude of apparatus, a device or a member of the vehicle, and to provide corresponding electrical signals. An acoustic signal generator provides a plurality of acoustic characterizing signals, indicative of corresponding predetermined operating conditions, and a plurality of acoustic level signals indicative of corresponding predetermined levels of importance attributable to the operating conditions. A processing unit detects on the basis of signals provided by the sensor devices the operating conditions of the vehicle and attaches in a predetermined manner, a level of importance to each operating condition identified, and supplies to the acoustic signal generator electrical control signals for causing the output of an acoustic signal comprising, in succession, the level signal and the characterizing signal associated with the operating condition detected.
Abstract:
A safety insert designed to be mounted in an assembly comprising a tire and a rim of a vehicle and device for detecting the bearing of the tire on an insert, so that the insert generates signals oriented parallel to the axis of rotation of the tire and rim assembly and so that the device detects and analyzes the vibrating signals of the chassis of the vehicle.
Abstract:
Methodology and apparatus are disclosed for transmitting data to a tire electronics device contained in a tire. The tire electronics device includes a vibration sensor and microcontroller configured so that vibrations sensed by the vibration sensor may be analyzed to determine if the vibrations occurred according to a predetermined sequence. Detection of the predetermined sequence of vibrations may be used to trigger data transmission from the tire electronics device or may be used as an indication to the tire electronics device that it should store additional data or modify its operation in a predetermined fashion. Data may be transmitted to the tire electronics using a variety of mechanical and electromechanical devices including permanently or temporarily installed traffic lane devices or portable mechanical or electromechanical devices.