Abstract:
A wireless-controlled airplane includes a flying unit and an on-ground controller which is connected to the flying unit through a communication section and flies the flying unit. The flying unit includes a body, a drive section installed on the body, a propulsion apparatus which generates a propulsive force when driven by the drive section, a main wing including a plurality of wing elements which are installed so as to be able to move with respect to each other, an opening and closing mechanism which changes the relative positions of the wing elements to change the effective area of the main wing, and a dropping apparatus which selectively holds and drops a load. By changing the effective area of the main wing, the flight speed can be changed, so the capacity and size of the drive section for rotating the propulsion apparatus can be decreased.
Abstract:
This invention relates to a small-sized radio controlled flying device propelled by a thermal engine (20) with pusher type airscrew (19) for remote sensing, said device enabling short take-off and landing and flying at maximum speed of 35 Km/h. The device comprises a pod and wings, the pod (1) being a rigid tricycle carriage dismountable by disengagement of substantially pyramidal jig with rear base (2) and front apex (7), lower plane (3), two lateral planes (4, 5) and an upper plane (6), the base being a welded one-piece element and comprising the engine, the airscrew, a tank and the radio control, the apex being a welded one-piece element, the lower plane and the two lateral planes comprising spars (11, 12) at least assembled at the base and at the apex, the lower plane comprising at its three end angles two rear wheels (8) and a front wheel (9), the front wheel being provided to protrude towards the front in the apex and the wheels being low pressure tires, the wings (13) being a caisson-type supple parachute, said wings being connected to the pod in an adjustable fashion by two front slings (17), two braking slings (18) acting on the two flaps/ailerons.
Abstract:
A deployable wing that is folded so as to fit into a carrier such as an airplane that is released and automatically with the aid of parachutes to deploy and fly a given distance without assistance other than steering to reach a given destination and a propeller driven by a gas powered engine is actuated to propel the wing an extended distance. A guard is disposed adjacent to the propeller to assure that the lines of the parachutes do not get tangled into the propeller blades.
Abstract:
An apparatus for capturing aerial view images via an image capturing device is provided. The apparatus includes a base; a housing defining a cavity allowing for insertion of the image capturing device, wherein the housing is engaged with the base; at least one extension member, each extension member including an upper end and a lower end, wherein the lower end of each extension member is engaged with the base, wherein each extension member extends upwardly from the base; and an air resisting element engaged with the upper end of each extension member.
Abstract:
FIG. 1 shows airframe 10 with electromagnetic field sensor 12, adjustable reference electromagnetic field strength 14, comparator 16, parachute 18, parachute trigger 19, and inspection camera 20 inspecting a transmission line corridor containing towers 40, 42, and 44, phase conductors 46, 48, and 50, and shield wires 52 and 54. Reference electromagnetic field strength 14 is adjusted before the flight to set the minimum electromagnetic field strength before parachute trigger 19 deploys parachute 18. The reference electromagnetic field strength 14 corresponds to a radius, and thus virtual tunnel 22, outside of which airframe 10 cannot fly without deploying parachute 18, regardless of the state of the autopilot, GPS signal, or radio link.
Abstract:
An unmanned aerial vehicle (UAV) comprising a plurality of propeller drives rigidly mounted to a foldable frame with the motor rotors aligned in a vertical direction to provide a means of vertical takeoffs and landings. The foldable frame mounts a sheet sail at an angle with the horizontal that provides lift during the forward motion and tilt of the UAV. In one embodiment the shape of the sheet sail and frame are triangular with one or two propeller drives being mounted in close proximity to each of the three vertices. In another embodiment, the shape of the sheet sail and frame are triangular with one or two propeller drives being mounted in close proximity to each of the three vertices, and one or two propeller drives being mount in close proximity to the trailing edge of the spine, in between the trailing edge propeller drives. In some embodiments, the frame spars may be comprised of carbon fiber rods and the sheet sail may be comprised of ripstop nylon fabric.
Abstract:
The invention relates to an automatic takeoff method for an aircraft with a flexible airfoil, comprising a carriage suspended by rigging lines from an airfoil. According to said method: —said carriage is provided with an autopilot controlling actuators that control said rigging lines; —said airfoil is provided with an airfoil attitude sensor, comprising a biaxial accelerometer and a biaxial rate gyro, capable of defining the position of an airfoil reference frame in relation to the ground, and means for communicating with said autopilot; —during takeoff, information is received from said airfoil attitude sensor and transmitted to said autopilot for the purpose of controlling said actuators. The invention also relates to an airfoil for the implementation of said method, comprising an airfoil attitude sensor with an inertial unit with a biaxial accelerometer and a biaxial rate gyro, and means for communicating with an autopilot. The invention further relates to an aircraft comprising such an airfoil.
Abstract:
A grapple assembly suspended as an external load from an associated flying vehicle includes a frame member secured to an associated load line suspended from the associated vehicle. The frame member includes a first section, a second section, and a hinge joint connecting the first section to the second section. A grapple mechanism is mounted to the frame member second section. If desired, an aerodynamic body can be mounted to the frame member so as to encase at least a portion of the frame member. A release mechanism can be provided for jettisoning at least a portion of the aerodynamic body. The release mechanism can be triggered by an operator who can be stationed in the flying vehicle.
Abstract:
An aerial delivery system including a ram-air parachute, one or more recovery parachutes, a mantle removably attached to a cargo, and a controller operably connected to the mantle, the ram-air parachute, and the one or more recovery parachutes. The controller may be configured to receive location information associated with a target, receive information related to an ambient condition, determine a recovery parachute opening point based on the target information and the ambient condition, and cause a navigation of the aerial delivery system to the determined recovery parachute opening point.
Abstract:
A powered remotely piloted vehicle which is not controllable at the low landing speeds necessary for landing on a platform of small area is provided with a para-foil type wing deployable at the beginning of a recovery sequence, and is further provided with a rocket ejectable line which is passed to the landing platform and winched in so that the composite flight vehicle and deployed para-foil wing is drawn towards the platform after the manner of a kite.