Abstract:
A near-net or net shape fused silica glass article, such as a radome. The article is formed by depositing silica soot onto a mandrel having a shape that corresponds to the shape of the fused silica glass article. In some embodiments, the mandrel is inductively heated to a temperature that is sufficient to consolidate or sinter the silica soot upon deposition onto the mandrel to form fused silica glass. The fused silica glass article may have an outer layer that is under compression and/or multiple layers comprising various dopants that can alter or affect physical, mechanical, electrical, and/or optical properties.
Abstract:
An amplifier optical fiber comprising a central core of a dielectric matrix doped with at least one element ensuring the amplification of an optical signal transmitted in the fiber and a cladding surrounding the central core and suitable for confining the optical signal transmitted in the core. The fiber also comprises metallic nanostructures suitable for generating an electronic surface resonance in the dielectric matrix of central core, the wavelength of said electronic surface resonance corresponding to an excitation level of the element ensuring the amplification.
Abstract:
A near-net or net shape fused silica glass article, such as a radome. The article is formed by depositing silica soot onto a mandrel having a shape that corresponds to the shape of the fused silica glass article. In some embodiments, the mandrel is inductively heated to a temperature that is sufficient to consolidate or sinter the silica soot upon deposition onto the mandrel to form fused silica glass. The fused silica glass article may have an outer layer that is under compression and/or multiple layers comprising various dopants that can alter or affect physical, mechanical, electrical, and/or optical properties.
Abstract:
Techniques for producing a glass structure having interconnected macroscopic pores, employing steps of filling polymerizable glass precursors into pores in a polymeric structure having interconnected macroscopic pores; polymerizing the precursors; and decomposing the polymers to produce a glass oxide structure having interconnected macroscopic pores. Further techniques employ steps of exposing portions of a photosensitive medium including glass precursors to an optical interference pattern; polymerizing or photodeprotecting the exposed portions and removing unpolymerized or deprotected portions; and decomposing the polymerized or deprotected portions to produce a glass structure having interconnected macroscopic pores. Techniques for filling pores of such glass structure with a material having a high refractive index, and for then removing the glass structure. Structures can be produced having interconnected macroscopic pores and high refractive index contrasts, which can be used, for example, as photonic band gaps.
Abstract:
The method for producing the polarizing glasses which have elongated metal particles oriented uniformly and dispersed, includes a glass base material preparing process in which the metal halide particles are precipitated in the strip of the glass base material; a elongating process in which the glass base material is heated by heaters set around the glass base material, and elongated by a drawing means set outside of the heaters along the longitudinal direction of the glass base material; and a reducing process in which the metal halide particles included in the elongated glass which is elongated in the elongating process are reduced. In the elongating process, the powers of the heaters are controlled so that the glass base material shrinks the outlines of the elongated part of the glass base material tilting by the tilt angle between 5 degrees and 20 degrees to the longitudinal direction of the glass base material.
Abstract:
A method of forming a preform which has a glass core surrounded by an outer glass cladding with a coating of a light interactive material disposed between the core and cladding. The method includes providing a glass core having a viscosity which lies within a given preselected temperature range, followed by forming a substantially homogeneous coating of a light interactive material over the surface of the core, with the coating material having a viscosity which is equal to or less than the viscosity of the glass core. A glass cladding is formed over the coated layer, with the cladding glass having a viscosity which overlaps the viscosity of the core glass and a thermal coefficient of expansion compatible with that of the core. The light interactive material is an inorganic material which includes a metal, metal alloy, ferrite, magnetic material and a semiconductor.
Abstract:
Disclosed is a method of fabricating an optical fiber preform using a modified chemical vapor deposition method and a nonlinear optical fiber fabricated using the method, in which an impurity component is doped after both ends of a quartz glass tube are partially collapsed, so that an impurity doping process can be stably executed and the doped quantity of the impurity component can be increased. The method comprises the steps of: forming a cladding layer and a core layer in a quartz glass tube; partially sintering the core layer; partially shrinking both ends of the quartz glass tube, in which the cladding layer and the core layer partially sintered are formed; and doping a sintered portion of the core layer with an impurity component, so that the optical fiber preform fabricated has a predetermined function. The nonlinear optical fiber comprises a cladding layer and a core layer, the nonlinear optical fiber being fabricated by a process comprising the steps of: forming the cladding layer and the core layer in a quartz glass tube; partially sintering the core layer; partially collapsing both ends of the quartz glass tube; and doping a sintered portion of the core layer with a predetermined impurity component.
Abstract:
A method of forming a preform which has a glass core surrounded by an outer glass cladding with a coating of an particulate optically active material disposed between the core and cladding. The method includes providing a glass core having a viscosity which lies within a given preselected temperature range, followed by forming a coherent coating of an optically active particulate material over the surface of the core, with the coating material having a viscosity which is equal to or less than the viscosity of the glass core. A glass cladding is formed over the coated layer, with the cladding glass having a viscosity which overlaps the viscosity of the core glass. The optically active material is an inorganic material which includes a metal, metal alloy, ferrite, magnetic material and a semiconductor. The invention includes the product formed by the process.
Abstract:
Disclosed is a method of preparing refractive microlenses in a single step, utilizing laser-induced surface structure formation in semiconductor doped glasses (SDGs). The SDG materials, in conjunction with above-bandgap wavelength laser sources, are used to fabricate lenses that operate with light of below-bandgap wavelengths. In accordance with the teaching of this invention lenses on an approximately 5-500 .mu.m diameter scale are fabricated individually or in arrays by laser irradiation of absorbing glasses. The microlenses have controllable characteristics and can be fabricated to have focal lengths as short as tens of microns. The lenses are generally parabolic or spherical in shape and are highly reproducible.
Abstract:
A method is disclosed wherein high purity fused silica is produced from a liquid flowable form of a silica slurry or sol and the refractoriness of the fused silica is enhanced by homogeneously doping the silica with elemental silicon.