Abstract:
The invention relates to a method for producing corrosion-resistant surfaces of nitrated or nitrocarburated steel components, the surfaces having roughness heights (Rz) of Rz≧1.5 μm. The method comprises the following steps: oxidation of the surfaces of the nitrated or nitrocarburated components in a first oxidation step; carrying out at least a second oxidation of the component surfaces in an immediately subsequent oxidation step; polishing the component surface in a final method step, directly after the final oxidation.
Abstract:
The invention relates to a method for method for formation of expanded austenite and/or expanded martensite by solution hardening of a cold deformed workpiece of a passive alloy, which method comprises a first step of dissolving at least nitrogen in the workpiece at a temperature T1, which is higher than the solubility temperature for carbide and/or nitride and lower than the melting point of the passive alloy, and a subsequent second step of dissolving nitrogen and/or carbon in the work piece at a temperature T2, which is lower than the temperature at which carbides and/or nitrides form in the passive alloy. The invention further relates to a member, such as a lock washer for securing bolts or nuts prepared using the method.
Abstract:
A method of manufacturing a machine component includes the steps of: preparing a member made of steel; forming a film containing vanadium at a surface by subjecting the member to oxidation; and forming a nitrogen-enriched layer by heating the member having the film formed in a heat treatment gas atmosphere containing nitrogen gas and absent of ammonia gas for carbonitriding.
Abstract:
In a process for carbonitriding metallic components (1), provision is made of at least one carburization phase (C1, C2), in which the metallic component (1) is carburized with a carbon-donating gas. In addition, provision is made of a nitriding phase (C1, C2, C3), which is assigned to the carburization phase (D1, D2) and precedes the carburization phase (D1, D2). Here, in the nitriding phase, the metallic component (1) is nitrided by means of a nitrogen-donating gas at least superficially at at least one surface region (4) of the metallic component (1). It is thereby possible to avoid an excessive concentration of carbon, and therefore component failure is prevented and it is possible to dispense with costly remachining steps, e.g. grinding.
Abstract:
The present invention is to provide a method for surface treatment that substantially provides no nitride compound layer that causes heat checks and abrasion to a die, while nitride is introduced in large quantities into the die internally, and as a result a die-casting die with excellent heat check resistance and excellent abrasion resistance can be produced. The method comprises a step of a nitriding process for forming on an aesthetic surface of the die-casting die a nitrided layer that includes at least a compound layer composed of a nitrogen compound by introducing gas containing at least ammonia gas to a heating furnace, a step of decomposing the compound by exhausting the ammonia gas from the heating furnace and for introducing ambient gas to the heating furnace, to carry out a thermal process to decompose the nitrogen compound, and a step of processing a shot peening process on the aesthetic surface of the die. The thickness of the compound layer contained in the nitrogen layer that is formed in the step of nitriding process is within the range of from 2∫m to 7∫m.
Abstract:
The invention relates to a method for carbonitriding at least one component (12) in a treatment chamber (16), in which at least one process gas (28; 30) is introduced into the treatment chamber (16), wherein a hydrogen content (44) is detected in an atmosphere developing in the treatment chamber (16) and is maintained in a desired range (55; 57) at least at intervals by influencing of the amount of the process gas (28; 30) that is fed.
Abstract:
The present invention comprises the nitridization of stainless steel with a gaseous nitrogen compound such as nitrogen gas (N2), or ammonia (NH3) at high temperature wherein the reaction pressure is lowered. A base powder with properties similar to those of a martensitic stainless steel is prepared from a molten metal with the subsequent incorporation of selective additives such as cobalt, chromium, boron, copper, vanadium, niobium and mixtures thereof to improve high temperature resistance to scuffing and adhesive wear. The molten mixture is then atomized by water- or air-atomization to yield a base powder which is mixed with nitrogen or ammonia gas at various pressures in a static or fluidized bed to provide a nitrogen alloyed particulate, i.e., a nitrided particulate alloy. The powder is heated in a hot isostatic press under vacuum with argon gas at reduced pressure and later cooled to ambient (room) temperature. A second embodiment of the invention also comprises the use of a wrought iron-based stainless steel or casting as the starting material to be nitrided.
Abstract:
A rolling bearing comprises an outer ring, an inner ring and rolling elements rotatably disposed between the outer and inner rings. At least a member selected from the outer ring, inner ring and rolling elements has C content of 0.2 or more and 0.6 or less wt %, Cr content of 2.5 or more and 7.0 or less wt %, Mn content of 0.5 or more and 2.0 or less wt %, Si content of 0.1 wt % or more and 1.5 or less wt %, and Mo content of 0.5 or more and 3.0 or less wt %. Further, a carburizing or carbo-nitriding treatment, a quenching treatment and a tempering treatment are applied to the selected member. Furthermore, retained austenite on a surface thereof is 15% or more and 45% or less vol. %, and the surface hardness thereof is HRC60 or more.
Abstract:
A furnace of heat treatment capable of keeping a stable nitriding quality for a long period of time is provided. The furnace of heat treatment performs a halogenation treatment and a nitriding treatment by heating a steel material under a predetermined atmosphere. An alloy containing Ni ranging between 50 mass % or more and 80 mass % or less and Fe ranging between 0 mass % or more and 20 mass % or less is used as a material of surfaces of core internals exposed to a treatment space where the nitriding treatment is performed. Accordingly, a nitriding reaction is hardly caused on the surfaces of the core internals, and the halogenation treatment and the nitriding treatment to an article to be treated can be stably executed for a long period of time. Further, a nitrided layer can be stably formed according to purposes on any types of steel materials including a steel type hard to be nitride.
Abstract:
A method for carbonitriding a steel part arranged in an enclosure maintained at a reduced internal pressure, the part being maintained at a temperature level, comprising an alternation of first and second steps, a carburizing gas being injected into the enclosure during the first steps only and a nitriding gas being injected into the enclosure only during at least part of at least two second steps.