Abstract:
A fluid dynamic body provides one or more fixed size escapelets through a foil body to reduce the induced and interference drag caused by trailing vortices and similar wake turbulence. The escapelets, which can be provided in both aerodynamic and hydrodynamic structures, such as wings, tail sections; rotary blades, guy wire frames, wing sails, and various underwater keels and wing keels. The escapelets transfer energy from an inlet located in the high-pressure surface of the foil or foil body to an outlet located in the lower-pressure surface, allowing energy that would normally form a vortex at the tip of the foil to be redirected and dissipated in a beneficial way. As a result, drag is reduced and fuel economy is increased. For example, in aircraft, escapelets can increase the authority of ailerons and similar flight control surfaces, allowing aircraft that were not previously spin recovery rated to become spin recoverable.
Abstract:
A power tool has an internal combustion engine with a cylinder. An injection valve supplies fuel to the internal combustion engine. A fuel pump conveys fuel from a fuel tank to the injection valve. A fan wheel is provided that is driven by the internal combustion engine. The cylinder is arranged in a first cooling zone of the power tool and the fan wheel conveys cooling air through the first cooling zone. The fuel pump is arranged in a second cooling zone of the power tool. Between the first cooling zone and the second cooling zone a buffer zone is arranged. The buffer zone is separated by at least one first partition from the first cooling zone and by at least one second petition from the second cooling zone.
Abstract:
In a device for providing clean combustion air for an internal combustion engine of a working tool, provision is made for a cyclone filter into which ambient air contaminated with impurities can be sucked. A partial air flow contaminated with impurities can be extracted by suction from the cyclone filter, a partial air flow substantially freed from impurities is branched off from the cyclone filter and supplied to the internal combustion engine as combustion air. A fan which provides a flow of cooling air against the internal combustion engine, is at least partially accommodated in a housing. Provision is made in the housing for at least one suction bore, which leads into the housing and provision is made in the area of the suction bore for a flow element for creating a low pressure. The partial air flow contaminated with impurities is connected to the suction bore.
Abstract:
A top plate is provided in a top portion of a cylinder block of a combustion engine of a type, provided with a cooling fan, so as to lie perpendicular to a longitudinal axis of an engine cylinder. An intake side gasket interposed between the cylinder block and an intake unit is extended upwardly to contact the top plate to thereby seal a gap between the top plate and the intake side gasket. An exhaust side gasket interposed between the cylinder block and an exhaust unit is extended upwardly to contact the top plate to thereby seal a gap between the top plate and the exhaust side gasket. A cooling passage for passing therethrough a cooling air from the cooling fan is formed by the cylinder block, the top plate, the intake side gasket and the exhaust side gasket.
Abstract:
A reciprocating device which may be operated either as a compressor or an engine. Each cylinder has a reciprocating piston connected to a piston rod. Dual cylinder chambers are located in each cylinder on opposite sides of the piston. The pistons are connected to a scotch yoke which translates the reciprocating motion of the pistons to rotary motion at a shaft in the engine mode. In the compressor mode, the shaft is connected to a power source. The engine components such as the pistons, rods, bushings and cylinder lines may be high quality steel or a ceramic.
Abstract:
A cooling system for a compact vehicle such as a compact loader having an engine and an engine compartment, includes a single axial flow fan that is surrounded by a shroud and has a high pressure side and a low pressure side. Air flow generated by the fan is used for cooling components of the compact vehicle and exhausting heated air from a second shroud. Auxiliary openings are provided between the engine compartment and the shrouds to provide air flow between the engine compartment and one or both of the shrouds when the fan is rotating. The motor driving the fan is reversible.
Abstract:
A motorcycle including a frame and an engine and transmission assembly coupled to the frame. The engine and transmission assembly includes at least one cylinder head assembly having a cooling port and defining a cooling passageway in fluid communication with the cooling port and passing through at least a portion of the cylinder head assembly. The motorcycle also includes a conduit coupled to the cooling port and a fan in fluid communication with the conduit and operable at an operating speed to draw air from the cooling passageway, and move air through the cooling port and through the conduit.
Abstract:
A motorcycle including a frame and an engine and transmission assembly coupled to the frame. The engine and transmission assembly includes at least one cylinder head assembly having a cooling port and defining a cooling passageway in fluid communication with the cooling port and passing through at least a portion of the cylinder head assembly. The motorcycle also includes a conduit coupled to the cooling port and a fan in fluid communication with the conduit and operable at an operating speed to draw air from the cooling passageway, and move air through the cooling port and through the conduit.
Abstract:
An air-cooled engine (10) is cooled by cooling air (Wi). The air-cooled engine (10) includes a cylinder block (33) and a cylinder head (28). The cylinder block (33) has cylinder cooling through-ducts (101, 102) capable of transmitting cooling air (Wi), on the periphery of a cylinder (26). The cylinder head (28) has a head-cooling through-duct (104) capable of transmitting cooling air (Wi). The cylinder-cooling ducts (101, 102) and the head-cooling duct (104) extend in a direction perpendicular to the axial line (109) of the cylinder (26), and are communicated with each other by means of communication channels (105, 105).
Abstract:
Engine cooling structure directs cooling air, introduced into a case by operation of a fan, to a cylinder block of an engine and then discharges the cooling air out of the case through an outlet port along meandering flow passages. Case cooling structure directs cooling along the inner surface of the case. Further cooling flow passage directs the air to vertically-oriented heat radiating fins so that the cooling air flows upward along the fins and then is discharged through the outlet port. Metal cooling-fan cover is supported by the lower cover via mounting members, and a resin-made cover guide is fastened to the engine together with supporting portions and interposed between the fan cover and the engine.