Abstract:
Systems and methods for preventing excessive loading on a wind turbine are disclosed. The method includes determining a current wind turbine parameter using at least one operating condition via a processor, the operating condition indicative of wind turbine operation; storing the current wind turbine parameter in a memory store over a predetermined time period; calculating a standard deviation of a plurality of the stored current wind turbine parameters; determining a future wind turbine parameter; calculating a maximum wind turbine parameter as a function of the standard deviation of the plurality of stored wind turbine parameters and the future wind turbine parameter; and, controlling the wind turbine based on a difference between the maximum wind turbine parameter and a parameter setpoint to prevent excessive loading from acting on the wind turbine.
Abstract:
Embodiments of the present disclosure generally relate to apparatus and methods for preventing power dips associated with power ramping in wind turbines. One embodiment of the present disclosure provides a method for stabilizing power output in a wind turbine, which includes tracking a rate of change in an external reference, such as an external power reference or external torque reference, computing a feed-forward pitch angle adjustment according to the rate of change in the external power reference, and sending the feed-forward pitch angle adjustment to the wind turbine to adjust a pitch angle of rotor blades simultaneously with adjusting power output according to the external reference.
Abstract:
A method is disclosed for controlling a wind turbine by optimizing its production while minimizing the mechanical impact on the transmission. The wind turbine comprises a nacelle provided with a rotor on which blades are fastened and an electrical machine linked to the rotor by a transmission in which pitch angle of the blades is controlled, comprising An aerodynamic torque setpoint and an electrical machine torque setpoint making possible maximizing the recovered power are determined from measurements of wind speed, of rotor speed and of electrical machine speed. At least one of the setpoints is modified by subtracting from it a term proportional to a difference between the measured speed of the rotor and the measured speed of the electrical machine. A pitch angle of the blades making possible production of the aerodynamic torque setpoint is determined. The blades are oriented according to the angle of inclination.
Abstract:
A wind energy power plant optical vibration sensor is described, using two light sources 15, 16 that emit light at different respective frequencies. The light from the first light source falls on a surface 44 of the wind energy power plant at a detection site. Movements in the surface result in changes to the phase of the light reflected back from the surface which can be detected by mixing the first light with the light emitted from the second light source. The difference in frequencies between the two light sources results in a beating of the resulting interference signal, whereas movements in the sensor surface result in changes in the phase timing and frequency of the beats.
Abstract:
The present subject matter is directed to a method for estimating rotor blade loads, e.g. a blade root resultant moment, of a wind turbine. In one embodiment, the method includes measuring, via one or more sensors, a plurality of operating parameters of the wind turbine. Another step includes estimating out-of-plane and in-plane forces acting on the rotor blade based at least partially on the plurality of operating parameters. Further, the method includes determining an application point for the out-of-plane and in-plane forces along a span of the rotor blade. A further step includes estimating out-of-plane and in-plane moments of the rotor blade based at least partially on the out-of-plane and in-plane forces and the respective application points. Thus, the method includes calculating the load acting on the rotor blade based at least partially on the out-of-plane and in-plane moments.
Abstract:
One or more controllers may perform one or more methods to control one or more air deflector units of one or more wind turbine rotor blades. The methods include per-blade control methods that may be performed, e.g., to reduce blade loading caused by wind gusts. The methods also include collective control methods that may be performed, e.g., to reduce tower motion and/or rotor speed.
Abstract:
A wind turbine is having at least one rotor blade, a blade heating system for heating at least a portion of the at least one rotor blade, at least one temperature sensor for sensing the external temperature in the region, or in the environment, of the wind turbine, at least one air humidity sensor for sensing the air humidity in the region, or in the environment, of the wind turbine, and a control unit for activating the blade heating system if the temperature falls below a temperature limit value and if an air humidity limit value is exceeded, the temperature limit value being +5° C. and the air humidity limit value being 70%.
Abstract:
The present invention relates to a method for controlling a wind power plant, comprising one or more wind turbine generator(s) connected to an electrical grid, and a power plant controller having an operational mode, controlling electrical parameters, wherein the method comprises, determining a first voltage level of one or more wind turbine generator(s), determining if the first voltage level of one or more wind turbine generator(s) is outside a first predetermined range, in case the first voltage level of one or more wind turbine generator(s) is outside a first predetermined range then, changing the operational mode of the power plant controller between first and second operational modes, the first operational mode controlling a first electrical parameter, the second operational mode controlling a second electrical parameter, the first and second parameters being different. The present invention also relates to a power plant controller and a wind power plant operated according to the method.
Abstract:
A control apparatus C of a horizontal axis wind turbine apparatus WTG calculates the value en of a pitch angle command for each blade based on the rate of change ΨD of the azimuth angle Ψ of a Nacelle N and the rotor azimuth angle of the blades B1, B2 and B3, causes the rotor R to generated torque around the yaw axis by periodically controlling the angle change of the pitch angle of the blades B1, B2 and B3, and using that torque, controls the rate of change of the azimuth angle of the nacelle N. The value of that angle change is calculated as a value that increases as the inputted value of the rate of the change ΨD increases.
Abstract:
A wind turbine control method is described based on the performance of various measurements of the oscillations of the nacelle of the wind turbine for the purpose of carrying out a series of calculations, the results of which allow parameterization of certain actions on different wind turbine elements in order to dampen oscillations. In summary, it may be said that the object of the invention described herein is a wind turbine control method whereby the oscillations of the nacelle of the wind turbine are dampened in the presence of voltage dips in particular and, in general, in any event that is susceptible of reducing active current generation capacity.